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Preface

In recent years, Statistics has been formulated as the science of
decision making under uncertainty. This formulation represents the
culmination of many years of development and, for the first time,
furnishes a simple and straightforward method of exhibiting the
fundamental aspects of a statistical problem. Earlier representations
had serious gaps which led to confusion and misunderstanding, es-
pecially on the part of elementary students without well-developed
statistical intuition.

This book is the result of nine years of experience at Stanford in
teaching a first course in Statistics from the decision making point of
view. The course was first started by the late M. A. Girshick and this
book may be regarded in part as an extension of his teaching.

A "first course" is contained in the first seven chapters. Our ex-
perience has been mainly with social science students in a five-unit,
one-quarter course. Here we covered the seven chapters in detail, in-
cluding the optional sections marked (t), and portions of the other
chapters.

A background of high school m~thematics suffices for this course,
and considerable effort has been taken to by-pass involved computa-
tional reasonings which confuse the inexperienced. On the other hand,
there has been no reluctance to use symbols, and the militantly non-
mathematical student will not enjoy this book.

The mathematical novice should find in this book a well-motivated
introduction to certain important and uncomplicated mathematical
notions such as set, function, and convexity. Students who have a
strong background in mathematics will find it profitable to spend
time on the Appendixes which have the proofs of basic results in de-
cision theory.

The reader will observe that new topics and ideas are introduced
by examples. Also, certain exercises carry an essential burden in
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viii PREFACE

the development of the material. These exercises are starred and
should be assigned. The teacher should take care to note that a few
of the exercises in the first three chapters and in Chapter 7 are liable
to be time-consuming.

In teaching the course, we have found it expedient to cover the
material in Chapter 1 in one lecture and to spend another hour or two
on the associated homework and classroom discussion. Chapter 2 was
customarily disposed of rapidly, in about three hours. Considerable
time was devoted to Chapter 5 which presents in detail most of the
underlying decision theory.

The last three chapters may be studied in any order. Chapter 8
consists of a relatively informal discussion of model building. Chap-
ters 9 and 10 treat classical statistical theory from the decision theory
point of view and are rather technical. Ordinarily we have covered
only portions of them. We regard it as inadvisable to attempt to do
much in these chapters unless the students have some previous back-
ground in statistics or mathematics.
This book does not have a treatment of classical statistical method-

ology. It is our hope to follow this volume with a second one present-
ing existing methodology in the decision theory framework. Thus,
this book will not be of much use to students who would like a single
course devoted to the study of a few generally applicable statistical
methods. Rather, we feel, that this book is well designed for those
who are interested in the fundamental ideas underlying statistics and
scientific method and for those who feel that they will have enough
need for Statistics to warrant taking more than one course.

HERMAN CHERNOFF

LINCOLN E. MOSES

Stanford University
March 1959
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CHAPTER 1

Introduction

1. INTRODUCTION

Beginning students are generally interested in what constitutes
the subject matter of the theory of statistics. Years ago a statis-
tician might have claimed that statistics deals with the processing
of data. As a result of relatively recent formulations of statistical
theory, today's statistician will be more likely to say that statistics
is concerned with decision making in the face of uncertainty. Its
applicability ranges from almost all inductive sciences to many
situations that people face in everyday life when it is not perfectly
obvious what they should do.
What constitutes uncertainty? There are two kinds of uncer-

tainty. One is that due to randomness. When someone tosses an
ordinary coin, the outcome is random and not at all certain. It is
as likely to be heads as tails. This type of uncertainty is in principle
relatively simple to treat. For example, if someone were offered
two dollars if the coin falls heads, on the condition that he pay
one dollar otherwise, he would be inclined to accept the offer since
he "knows" that heads is as likely to fall as tails. His knowledge
concerns the laws of randomness involved in this particular problem.
The other type of uncertainty arises when it is not known which

laws of randomness apply. For example, suppose that the above
offer were made in connection with a coin that was obviously bent.
Then one could assume that heads and tails were not equally likely
but that one face was probably favored. In statistical terminology
we shall equate the laws of randomness which apply with the
state of nature.
What can be done in the case where the state of nature is un-

known? The statistician can perform relevant experiments and
take observations. In the above problem, a statistician would (if
he were permitted) toss the coin many times to estimate what is

1



2 ELEMENTARY DECISION THEORY

the state of nature. The decision on whether or not to accept the
offer would be based on his estimate of the state of nature.
Onemay ask what constitutes enough observations. That is, how

many times should one toss the coin before deciding? A precise
answer would be difficult to give at this point. For the time being
it suffices to say that the answer would depend on (1) the cost of
tossing the coin, and (2) the cost of making the wrong decision.
For example, if one were charged a nickel per toss, one would be
inclined to take very few observations compared with the case
when one were charged one cent per toss. On the other hand, if
the wager were changed to $2000against $1000,then it would pay
to take many observations so that one could be quite sure that the
estimate of the state of nature were good enough to make it almost
certain that the right action is taken.
It is important to realize that no matter how many times the

coin is tossed, one may never know for sure what the state of
nature is. For example, it is possible, although very unlikely, that
an ordinary coin will give 100heads in a row. It is also possible
that a coin which in the long run favors heads will give more tails
than heads in 100 tosses. To evaluate the chances of being led
astray by such phenomena, the statistician must apply the theory
of probability.
Originally we stated that statistics is the theory of decision

making in the face of uncertainty. One may argue that, in the
above example, the statistician merely estimated the state of
nature and made his decisionaccordingly, and hence, decisionmak-
ing is an overly pretentious name for merely estimating the state
of nature. But even in this example, the statistician does more
than estimate the state of nature and act accordingly. In the $2000
to $1000bet he should decide, among other things, whether his
estimate is good enough to warrant accepting or rejecting the
wager or whether he should take more observations to get a better
estimate. An estimate which would be satisfactory for the $2 to $1
bet may be unsatisfactory for deciding the $2000 to $1000bet.

2. AN EXAMPLE

To illustrate statistical theory and the main factors that enter
into decision making, we shall treat a simplified problem in some
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detail. It is characteristic of many statistical applications that,
although real problems are too complex, they can be simplified
without changing their essential characteristics. However, the ap-
plied statistician must try to keep in mind all assumptions which
are not strictly realistic but are introduced for the sake of simpli-
city. He must do so to avoid assumptions that lead to unrealistic
answers.
Example 1.1. The Contractor Example. Suppose that an electri-

cal contractor for a house knows from previous experience in
many communities that houses are occupied by only three types
of families: those whose peak loads of current used are 15 amperes
(amp) at one time in a circuit, those whose peak loads are 20 amp,
and those whose peak loads are 30 amp. He can install 15-amp
wire, or 20-amp wire, or 30-amp wire. He could save on the cost
of his materials in wiring a house if he knew the actual needs of
the occupants of that house. However, this is not known to him.

One very easy solution to the problem would be to install 30-amp
wire in all houses, but in this case he would be spending more to
wire a house than would actually be necessary if it were occupied
by a family who used no more than 15 amp or by one that used no
more than 20 amp. On the other hand, he could install 15-amp
wire in every house. This solution also would not be very good
because families who used 20 or 30 amp would frequently burn
out the fuses, and not only would he have to replace the wire with
more suitable wire but he might also suffer damage to his repu-
tation as a wiring contractor.

TABLE 1.1

LOSSES INCURRED BY CONTRACTOR

Install Install Install
15 amp 20 amp 30 amp

Bl-family uses 2 315 amp
B,-family uses 5 2 320 amp
B.-family uses 7 6 330 amp
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Table 1.1 presents a tabulation of the losses which he sustains
from taking various actions for the various types of users.
The thetas (0) are the possible categories that the occupants of

a particular house fall into; or they are the possible states of
nature. These are: 0l-the family has peak loads of 15 amp; 0.-
the family has peak loads of 20 amp; and Og-the family has peak
loads of 30 amp. I
The a's across the top are the actions or the different types of

installations he could make. The numbers appearing in the table
are his own estimates of the loss that he would incur if he took a
particular action in the presence of a particular state.
For example, the 1 in the first row represents the cost of the 15-

amp wire. The 2 in the first row represents the cost of the 20-amp
wire, which is more expensive since it is thicker."
In the second row we find a 5 opposite state 0•• under action al.

This reflects the loss to the contractor of installing 15-ampwire in
a homewith 20-amp peak loads; cost of reinstallation, and damage
to his reputation, all enter into this number. It is the result of a
subjective determination on his part; for one of his competitors
this number might be, instead, a 6. Other entries in the table have
similar interpretations.
Since he could cut down the losses incurred in wiring a house if

he knew the value of 0 for the house (i.e., what were the electrici-
ty requirements of the occupant), he tries to learn this by perform-
ing an experiment. His experiment consists of going to the future
occupant and asking how many amperes he uses. The response is
always one of four numbers: 10, 12, 15, or 20. From previous ex-
perience it is known that families of type 01 (15-amp users) answer
ZI (10 amp) half of the time and z. (12 amp) half of the time; fami-
lies of type O. (20-ampusers) answer z. (12 amp) half of the time
and ZJ (15 amp) half of the time; and families of type 03 (30-amp
users) answer Zg (15 amp) one-third of the time and z. (20 amp)
two-thirds of the time. These values are shown in Table 1.2. In
fact, the entries represent the probabilities of observing the Z

values for the given states of nature.
I We shall almost always use Greek letters to denote states of nature or special

characteristics of states of nature.
• Apparently the contractor has already been paid off and he considers every

dollar out of his pocket a loss.
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TABLE 1.2

FREQUENCY OF RESPONSES FOR VARIOUS STATES

OF NATURE IN THE CONTRACTOR EXAMPLE

5

Zl Z. Z3 z.

(10 amp) (12 amp) (15 amp) (20 amp)

1/2 1/2 0 0

0 1/2 1/2 0

0 0 1/3 2/3

The contractor now formulates a strategy (rule for decision
making) which will tell him what action to take for each kind of
observation. For instance, one possible rule would be to install 20-
amp wire if he observes Z,; 15-amp wire if he observes Z.; 20-amp
wire if he observes ZJ; and 30-amp wire if he observes Z.. This we
symbolize by 8=(a., aI' a., a3), where the first a. is the action taken
if our survey yields Z,; a, is the action taken if z. is observed; the
second a. corresponds to ZJ; and a3 corresponds to z•.

Table 1.3 shows five of the 81 possible strategies that might be
employed, using the above notation.

TABLE 1.3

STRATEGIES (RULES FOR DECISION MAKING)

Z, Z. Z3 z.

(10 amp) (12 amp) (15 amp) (20 amp)

8, a, al a. a3
8. a, a. a3 a3
83 a3 a3 a3 a3
8. a, a, a, al

85 a3 a3 a. al

Note that 8. is somewhat more conservative than 8,. Both 83 and
8. completely ignore the data. The strategy 85 seems to be one
which only a contractor hopelessly in love could select.

How shall we decide which of the various strategies to apply?
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First, we compute the average loss that the contractor would
incur for each of the three states and each strategy. For the five
strategies, these losses are listed in Table 1.4.

TABLE 1.4

A VERAGE Loss IN CONTRACTOR EXAMPLE

81 82 8J

Bl-family uses 1.5 315 amp
B2-family uses 3.5 2.5 320 amp
B.-family uses 4 3 330 amp

3

5 2.5

7 6.67

They are computed in the following fashion:
First we compute the action probabilities for 81= (aI' all a., a.).

If ()l is the state of nature, we observe Zl half the time and Z.l half
the time (see Table 1.2). If 81 is applied, action a, is taken in either
case, and actions a. and a. are not taken. If (). is the state of
nature, we observe z. half the time and z. half the time. Under
strategy 811 this leads to action al with probability 1/2, action a.1
with probability 1/2, and action a. never. Similarly, under ()3, we
shall take action al never, a. with probability 1/3, and a. with pro-
bability 2/3. These results are summarized in the cwtion proba-
bilitie8 for 81 (Table 1.5) which are placed next to the losses (copied
from Table 1.1).
If ()l is the state of nature, action al is taken all of the time,

giving a loss of 1 all of the time. If ()2 is the state of nature,
action al yielding a loss of 5 is taken half the time and action a.1
yielding a loss of 2 is taken half the time. This leads to an
average loss of

5 x 1/2 + 2 x 1/2 = 3.5.
Similarly the average loss under ()3 is

6 x 1/3 + 3 x 2/3 = 4.
Thus the column of average l088e8 corresponding to 81has been com-
puted. The corresponding tables for strategy 8. are indicated in
Table 1.5. The other strategies are evaluated similarly.
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In relatively simple problems such as this one, it is possible to
compute the average losses with less writing by juggling Tables
1.1, 1.2, and 1.3 simultaneously.

Is it clear now which of these strategies should be used? If we
look at the chart of average losses (Table 1.4), we see that some
of the strategies give greater losses than others. For example,

TABLE 1.5

LOSSES, ACTION PROBABILITIES. AVERAGE Loss

Losses Action Probabilities Average Loss

States of
For 81 = (al. alo a2. a,)

Nature al a2 Ci, al a2 a,

81 1 2 3 1 0 0 1

8. 5 2 3 1/2 1/2 0 3.5

8, 7 6 3 0 1/3 2/3 4

For 82 = (alo a-, u,. a,)

al a2 a, al a- u,

81 1 2 3 1/2 1/2 0 1.5
82 5 2 3 0 1/2 1/2 2.5
8, 7 6 3 0 0 1 3

if we compare 86 with 82, we see that in each of the three states
the average loss associated with 86 is equal to or greater than that
corresponding to 82, The contractor would therefore do better to
use strategy 82 than strategy 86 since his average losses would be
less for states 01 and 0, and no more for O2, In this case, we say
" 82 dominates 85," Likewise, if we compare 84 and 8" we see that
except for state 01, where they were equal, the average losses in-
curred by using 84 are larger than those incurred by using 81, Again
we would say that 84 is dominated by strategy 81, It would be
senseless to keep any strategy which is dominated by some other
strategy. We can thus discard strategies 84 and 86, We can also
discard 83 for we find that it is dominated by 82,

If we were to confine ourselves to selecting one of the five listed
strategies, we would need now only choosebetween 81 and 82, How
can we choose between them? The contractor could make this
choice if he had a knowledge of the percentages of families in the
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community corresponding to states 01' 02' and 03' For instance,
if all three states are equally likely, i.e., in the community one-
third of the families are in state OIl one-third in state 02' and one-
third in state 03' then he would use S2, because for S2 his average
loss would on the average be

1.5 x 1/3 + 2.5 x 1/3 + 3 x 1/3 = 2.33
whereas, for SI his average loss would on the average be

1 x 1/3 + 3.5 x 1/3 + 4 x 1/3 = 2.83.
However, if one knew that in this community 90% of the

families were in state 01 and 10% in 02' one would have the
average losses of

1 x 0.9 + 3.5 x 0.1 = 1.25
1.5 x 0.9 + 2.5 x 0.1 = 1.60

and SI would be selected. Therefore, the strategy that should be
picked depends on the relative frequencies of families in the three
states. Thus, when the actual proportions of the families in the
three classes are known, a good strategy is easily selected. In the
absence of such knowledge, clwice is inherently difficult. One prin-
ciple which has been suggested for choosing a strategy is called the
"minimax average loss rule." This says, "Pick that strategy for
which the largest average loss is as small as possible, i.e., minimize
the maximum average loss." Referring to Table 1.4, we see that,
for SIl the maximum average loss is 4 and for S2 it is three. The
minimax rule would select s.. This is clearly a pessimistic approach
since the choice is based entirely on consideration of the worst
that can happen.
In considering our average loss table, we discarded some strate-

gies as being "dominated" by other procedures. Those we re-
jected are called inadmissible strategies. Strategies which are not
dominated are called admissible.
In our example it might turn out that SI or S2 would be dominated

by one of the 76 strategies which have not been examined; on the
other hand, other strategies not dominated by SI or S2 might be
found. An interesting problem in the theory of decision making
is that of finding all the admissible strategies.
Certain questions suggest themselves. For example, one may

ask why we put so much dependence on the" average losses."
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This question will be discussed in detail in Chapter 4 on utility.
Another question that could be raised would be concerned with the
reality of our assumptions. One would actually expect that peak
loads of families could vary continuously from less than 15amp to
more than 30 amp. Does our simplification (which was presumably
based on previous experience) lead to the adoption of strategies
which are liable to have very poor consequences (large losses)? Do
you believe that the assumption that the only possible observations
are Zll Z., Z3' and Z4 is a serious one? Finally, suppose that several
observations were available, i.e., the contracter could interview
all the members of the family separately. What would be the
effect of such data? First, it is clearly apparent that, with the
resulting increase in the number of possible combinations of data,
the number of strategies available would increase considerably.
Second, in statistical problems, the intelligent use of more data
generally tends to decrease the average losses.

In this example we ignored the possibility that the strategy could
suggest (1) compiling more data before acting, or (2) the use of
altogether different data such as examining the number of electric
devices in the family's kitchen.

3. PRINCIPLES USED IN DECISION MAKING

Certain points have been illustrated in the example. One is that
the main gap in present-day statistical philosphy involves the ques-
tion of what constitutes a good criterion for selecting strategies.
The awareness of this gap permits us to see that in many cases it
really is not serious. First, in many industrial applications, the
frequencies with which the state of nature is 0

"
0., etc., is approx-

imately known, and one can average the average losses as
suggested in the example. In many other applications, the
minimum of the maximum average loss is so low that the use of
the minimax rule cannot be much improved upon.

Another point is that the statistician must consider the conse-
quences of his actions and strategies in order to select a goodrule for
decision making (strategy). This will be illustrated further in
Exercise 1.1 where it is seen that two reasonable people with dif-
ferent loss tables may react differently to the same data even
though they apply the same criterion.
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Finally, the example illustrates the relation between statistical
theory and the scientific method. Essentially every scientist who
designs experiments and presents conclusions is engaging in
decision making where the costs involved are the time and money
for his experiments, on one hand, and damage to society and his
reputation if his conclusions are seriously in error, on the other
hand. It is not uncommon to hear of nonsense about conclusions
being "scientifically proved." In real life very little can be
certain. If we tossed a coin a million times, we would not know
the exact probability of its falling heads, and we could (although
it is unlikely) have a large error in our estimate of this probability.
It is true that, generally, scientists attach a large loss to the act
of presenting a conclusion which is in error and, hence, they tend
to use strategies which decide to present conclusions only when the
evidence in favor is very great.

4. SUMMARY

The essential components in decision-making problems are the
following:
1. The available actions aI' a2, •••• A problem exists when there

is a choice of alternative actions. The consequence of taking one
of these actions must depend on the state of nature. Usually the
difficulty in deciding which action to take is due to the fact that it
is not known which of
2. the possible states of nature (J" (J2' ••• is the true one.
3. The loss table (consequence of actions) measures the cost of

taking actions a" a2, ••• respectively when the states of nature are
(JI' (J2' ••• respectively.
Given the loss table, it would be easy to select the best action if

the state of nature were known. In other words, the state of
nature represents the underlying "facts of life," knowledge of
which we would like in order to choose a proper action. A state of
nature can be made to reveal itself partially through an
4. experiment, which leads to one of
4(a). the possible observations Zl' Z" •• •• The probabilities of

these various observations depend upon what the state of nature
actually is.
4(b). The table of frequency responses shows this dependence.
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An informative experiment is one where the frequencies of re-
sponses depend heavily on the state of nature. Each of
5. the available strategies s,' S2 ••• is a recipe which tells us how

to react (which action to take) to any possible data.
For example, Paul Revere's assistant was to hang lamps accord-

ing to the strategy" One if by land, two if by sea" (and implicit-
ly, none if the British did not come).

6. Finally, the average loss table gives us the consequence of the
strategies. It is in terms of this table that we must determine
what constitutes a good strategy. With a well-designed or in-
formative experiment, there will be strategies for which the
average loss will tend to be small.

An intermediate step in the computation of the average loss
table consists of evaluating a table of action probabilities for each
strategy. This table of action probabilities tells how often the
strategy will lead to a given action when a certain state of nature
applies.
*Exercise 1.1. Suppose that our contractor is a "fly-by-night

operator," and his loss table is not given by Table 1.1 but by the
following table (Table 1.6):

TABLE 1.6

LOSSES FOR" FLY-By-NIGHT OPERATOR"

States of
U, Ul U3Nature

8, 1 2 3

8. 1 2 3

83 2 3

What would constitute a good strategy for him?
Exercise 1.2. Suppose that the contractor (the original respecta-

ble business man and not the fly-by-night operator) discovers a
new type of wire available on the market. This is a 25-amp wire.
Even though this wire would not be appropriate for any state of

* Starred exercises should be assigned to students.
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nature if the state of nature were known, a reasonable strategy
may call for its use occasionally. Extend Table 1.1 so that, for at
(installing 25-amp wire), the losses are 2.4, 2.4, and 4 for 8J, 8"
and 8~ respectively. Introduce at least two new "reasonable"
strategies which occasionally call for a4• Evaluate the associated
average losses. Are these strategies admissible? If one of them
is admissible, describe the circumstances, if any, in which you
would use it.

*Exercise 1.3. Construct and carry through the details of a
problem which exhibits all the characteristics of decision making
summarized in Section 4. Present and evaluate some reasonable
and unreasonable strategies. Indicate which, if any, of the
simplifications introduced into this problem are liable to be serious
in that they may strongly affect the nature of a good strategy.
Rema,rks. Among other interesting problems are those which

deal with diagnosis of illness, the question of wearing rainc1othes,
and the decision between not shaving and arriving late on a date.
In the contractor problem the experiment yields only one out of

four possible observations. If the contractor had supplemented
his question with a count of the number of electric appliances in
the house, his data would have consisted of two observations out
of very many possible pairs of observations. Then the number of
available strategies would have been multiplied considerably. For
the sake of simplicity, it is suggested that you construct a problem
where the experiment will yield only one of a few possible observa-
tions; for example, one temperature reading on a thermometer
with possible readings "normal," "warm," and "hot." Please
note that if there is only one possible observation, you have no
experiment. Thus the executive who asks his "yes" man for
criticism obtains no relevant information.

Exercise 1.4. The minimax average regret principle is a modi-
fication of the minimax average loss principle. In Table 1.1, we
note that, if 8, were the state of nature, the least loss of all the
actions considered would be 1. For 8. and 83, these minimum losses
would be 2 and 3. These losses may be considered unavoidable and
due to the state of nature. Each loss then represents this unavoid-
able loss plus a regret (loss due to ignorance of 8). Subtracting



INTRODUCTION 13

these unavoidable losses, we obtaih the regret table, Table 1.7, 'and .
the average regret table, Table 1.'g.

Table 1.8 could be obtained in either of two ways. First, we
could construct it from Table 1.7 just as Table 1.4 was constructed
from Table 1.1. Alternatively, {ye can subtract the minimum
possible losses 1, 2, and 3 from th~ OIl O2, and 03 rows respectively,

,I
of Table 1.4.

TABLE 1.7

REGRET IN CONTRACTOR EXAMPLE

o
3

4

o
3

2

o

TABLE 1.8

A VERAGE REGRET IN CONTRACTOR EXAMPLE

States of ,
Nature 81 82 83 84 85

81 0 0.5 2 0 2

82 1.5 0.5 1.0 3.0 0.5
83 1 0' 0 4 3.67

Max. average regret I 1.5 0.5 2 4 3.67

The strategy which minimizes ~hemaximum regret is s2.Apply
these ideas in your example of' Exercise 1.3 by evaluating the
minimax average loss and minimax average regret strategies. Must;
these principles always yield the: same strategy for all decision-
making examples?
Exercise 1.5. When Mr. Clark;passed through East Phiggins in

its pioneer days, he was expect~d to bring back information to
guide the coming settlers on whether or not to take along air con-
ditioners. The available actions: for the settlers were all to take
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air conditioners, and a., to leave them behind. He considered three
possible states of nature describing the summer weather in East
Phiggins; 01-80% of the days are very hot and 20% hot; 0.-50%
of the days are very hot, 30% hot, and 20% mild; and 03-20% of
the days are very hot, 30% hot, and 50% mild. Since he passed
through Phiggins in one day, his data consisted of one of the
following possible observations describing that day: Z1 very hot, z.
hot, and Z3 mild. One of the settlers, after considerable introspec-
tion involving the difficulty of carrying air conditioners which
would replace other important items and the discomfort without
them, represented his losses by Table 1.9.

TABLE 1.9

LOSSES IN AIR-CONDITIONER PROBLEM

States of
a1 ajNature

81 3 10

8. 3 4

83 3

The first row of the frequency of response table is given by

Z1

0.8 0.2 o

(a) Complete the frequency of response table.
(b) List five strategies and evaluate their average losses.
(c) Among these five strategies, point out which is the minimax

average loss strategy, and which is the best strategy if Oir 0., and
03 were equally likely.
(d) Mr. Clark passed through on a hot day. What actions do the

strategies of (c) call for?
Exerci8e 1.6. For a decision-making problem with losses,

frequency of responses, and strategies given in Tables 1.10(a), (b),
and (c), evaluate the average losses for strategies 8ir 8., 83, and
8•• How many possible strategies are there?



TABLE l.1O(a)

LOSSES

INTRODUCTION

TABLE 1.10 (b)

FREQUENCY OF RESPONSE

15

al a. a3 a4 : Zl Z. Z3 Z4

91 0 2 4 8 91 0 0.4 0.6 0
92 6 4 2 5 9. 0.4 0.2 0.2 0.2
93 3 2 1 0 >

93 0.1 0.2 0.3 0.4

TABLE 11.1O(c)

ACTIONS REQUIRED BY.CERTAIN STRATEGIES
II

Responses I
;1

'l
Strategies Zl n Z. Z3 Z4

81 a( a. a3 a4

~ at 'j~ ~ ~

83 ~~ 1~ ~ ~
I

84: at t a.. al al

I
Exercise 1.7. Jane Smith can~ook spaghetti, hamburger, or

steak for dinner. She has learned from past experience that if her
husband is in a good mood she can serve him spaghetti and save
money, but if he is in a bad mood':only a juicy steak will calm him
down and make him bearable. In' short, there are three actions:

I

al prepare ~paghetti;
a. prepare hamburger;

I~ prepare steak.
:1

Three states of nature: ::
(}1 Mr. Smith is ih a good mood;
(). Mr. Smith is ih a normal mood;
(}3 Mr. Smith is iAa bad mood.

The loss table is: \1

a1 a. a3

.1
91 0 21 4

I
9. 5 3.1 5

I
93 10 9, 6

~1
.1

:[
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The experiment she performs is to tell him when he returns home
that she lost the afternoon paper. She foresees four possible
responses. These are:

Zl "Newspapers will get lost";
Z2 •• I keep telling you •a place for everything

and everything in its place' ";
Za •• Why did I ever get married? "
Z4 an absent-minded, far-away look.

The frequency of response table is

61 0.5

62 0.2

0.4
0.5
0.2

0.1

0.2
0.5

o
0.1

0.3

(a) List four strategies and evaluate their average losses.
(b) Point out the minimax average loss strategy.
(c) Which is the best of these strategies if Mr. Smith is in a

good mood 30% of the time and in a normal mood 50% of the
time?
Exercise 1.8. Replace Table 1.1 by

aa

10

10

2

2

10

3

3

3

Evaluate the average losses for the five strategies of Table 1.3.

SUGGESTED READINGS
Problems in statistics and in game theory are very closely related. For ex-

ample, statistical problems are sometimes referred to as games against nature.
A very brief discussion will be found in Appendix Fl.
An elementary exposition of game theory is given in:
[ 1] Williams,]. D., The Compleat Strategyst, Being a Primer on the Theory of Games of

Strategy, McGraw-Hill Book Co., New York, 1954, Dover Publications, Inc., New
York,1986.
A popularized version of decision making applied to statistics will be found in:

[ 2] Bross, J.D.]., Designfor Decision, The Macmillan Co., New York, 1953.



CHAPTER 2

Data Processing

1. INTRODUCTION

In the preceding chapter we remarked that the number of availa-
ble strategies increases rapidly with the amount of data available.
When there are many observations, at least some rough methods
of summarizing their content should be considered. Of course,
what constitutes a goodmethod of summarizing data is determined
by the uses to which the data will be put. For example, if a man-
ufacturer were interested in the probability that an item produced
by a certain machine will be defective, this quantity could
be estimated by taking the proportion of defectives obtained during
the output of one day. If, however, he were interested in knowing
whether his machine was "in control," Le., whether the proba-
bility of producing a defective was constant during the day, then
he might compare the proportion of defectives obtained during the
morning with that for the afternoon.
In this chapter we shall very briefly present some standard

procedures of data processing. This chapter may well be consider-
ed a digression (but a necessary one) in the presentation of sta-
tistical ideas, especially since a better understanding of the value
of these procedures will come after the basic ideas of statistics
are more thoroughly examined.

2. DATA REPRESENTATION

Example 2.1. A new process for making automobile tires was
developed by the research staff of the Wearwell Rubber Company.
They took a sample of 60of these tires and tested them on a device
which simulates the ordinary environment of automobile tires in
use. When the tread was worn off, the mileage recorded for the
tire was listed. (These numbers are rounded off to the nearest
hundred miles, e.g., 43,689miles and 43,743miles are listed as 43.7

17
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thousand miles.) The list is given in Table 2.1 and called the raw
data since they are unprocessed (except for the rounding).

TABLE 2.1

RAW DATA: WEAR FOR SIXTY NEW WEARWELL TIRES (THOUSANDS OF MILES)

40.1
47.5
46.9
45.8
47.2
45.2
44.1
42.9
47.0
52.0
42.1
42.6
41.9
43.9
46.7

50.2
43.6
48.8
45.0
46.0
44.2
41.3
48.2
49.8
47.9
42.6
49.1
46.1
50.8
51.2

48.9
42.3
44.4
47.7
47.7
45.5
42.8
39.1
37.4
40.7
40.6
46.9
46.4
44.5
43.4

40.4
43.7
41.5
43.3
43.9
43.9
46.7
44.7
43.6
46.3
43.1
41.8
45.5
48.3
44.8

An array of 60 numbers such as this contains all the information
afforded by the experiment, but in its present form it is a more or
less meaningless jumble of numbers which the mind cannot grasp
nor interpret. A useful way of organizing the data is to group them
by size. Often about 10 groups are a satisfactory choice; so we
note that the smallest rounded mileage among the 60 is 37.4 and
the largest is 52.0. The total range is 14.6 = 52.0 - 37.4. Since
14.6/10 = 1.46 is near to 1.5, we will break up the range of values
into separate intervals each of length 1.5, and every observation
should then fall into one of ten intervals. In choosing just which
possible set of intervals of length 1.5 to use, it is convenient to
select them so that their mid-points are easy numbers to work with,
such as 38.0,39.5,41.0, etc., rather than inconvenient ones such as
38.23, 39.73, 41.23, etc. Choice of interval1ength and interval mid-
points establishes the interval boundaries since they must lie half
way between mid-points. For the mid-points 38.0, 39.5, 41.0, etc.,
the boundaries are 37.25, 38.75, 40.25, etc.
We now write down a list of the intervals showing the boundaries

(and also the mid-points) ; then we run through the data in Table
2.1 and, as we come to each observation, enter a tally mark for the
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interval in which the observation lies. The result is shown in Table
2.2.

TABLE 2.2

TALLY SHEET AND FREQUENCY DISTRIBUTION FOR WEAR DATA
ON WEARWELL TIRES (THOUSAND OF MILES)

Mid-points Intervals Tallies

Number of
Observations
in Interval

(frequency)

Proportion of
Observations in
Interval (relative

frequency)

38.0 37.25-38.75 I 1 0.0167
39.5 38.75-40.25 II 2 0.0333
41.0 40.25-41.75 1fI.L 5 0.0833
42.5 41.75-43.25 1HI.1111 9 0.1500
44.0 43.25-44.75 tHI"tH/.111 13 0.2167
45.5 44.75 - 46.25 lH/.111 8 0.1333
47.0 46.25-47.75 tHI"fI.IJ.l 11 0.1833
48.5 47.75-49.25 tHll 6 0.1000
50.0 49.25-50.75 II 2 0.0333

51.5 50.75-52.25 III 3 0.0500

This table was constructed by reading down the list of data in
Table 2.1 and, upon reading 40.1, entering a tally in the interval
38.75-40.25, then upon reading 47.5, entering a tally in the interval
46.25-47.75, etc. The number of tallies for each interval can be
seen visually, literally" giving a picture of the data." After the
tally is completed, the last two columns may be filled in. The first
of these lists the number of observations in each interval (frequen-
cy). Relative frequencies, shown in the last column, are obtained
by dividing the frequency by the sample size (60 in this example).
In arriving at this convenient representation, or tabular summary

of the 60 observations, we tacitly avoided one pitfall of which the
student should take note. Reference to Table 2.2 shows that the
mid-points chosen all have one figure after the decimal point, ex-
actly as the rounded data themselves have, and that the boundaries
of the intervals all have an extra decimal digit 5. This forces each
rounded observation to lie inside one interval, and never on the
boundary between two intervals. It also ensures that any rounded
observation will be tallied in the same interval as it would have
been had it not been rounded. For example, the fourth observation
in column 3 of Table 2.1 is shown as 47.7, and it was tallied in the
interval 46.25-47 .75. Before that observation was rounded, it might
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have been 47.659or 47.749; in either case it would be rounded to
47.7 and, in either case, it would properly belong to the interval
into which it was finally put. But suppose that we had chosen a
system of mid-points and an interval length so that one of the cell
boundaries was 47.7. In this case, we would not know into which
interval to tally 47.7. This pitfall (of having cell boundaries be
possiblevalues for the data) was avoided by choosing the mid-points
to be possible values (i.e., have one figure after the decimal place
in this example) and using an interval length which was an odd
number (1.5) instead of an even number (such as 1.4).
Exercise 2.1. List appropriate mid-points and intervals for a tally

sheet with eight instead of ten intervals for wear data on Wearwell
tires.
Exercise 2.2. List appropriate mid-points for a tally sheet with

eight intervals based on the weights of students in your class. The
weights are to be rounded off to the nearest pound.

3. GRAPHICAL REPRESENTATIONS: HISTOGRAM

From the data as summarized in Table 2.2, we can derive a simple
graphical representation which yields at a glance an effective
picture of the data, and which sacrifices practically no information.
This graph is called the histogram.
Graph paper consists of paper marked with horizontal and verti-

cal lines. One of the horizontal lines is called the horizontal axis,
and one of the vertical lines is called the vertical axis. The point
where these two lines intersect is called the origin. Each point on
the paper can be represented by a pair of numbers. These are
called the coordinates. The first coordinate is also called the abscissa
and represents the horizontal distance of the point from the
vertical axis. The secondcoordinate is called the ordinate and repre-
sents the vertical distance of the point from the horizontal axis.
For points below the horizontal axis the ordinate is negative, and
for points to the left of the vertical axis the abscissa is negative.
In Figure 2.1, the coordinates of the points P, Q, R, and S are
(2,1),(-2,1), (-2, -1), and (2,-1) respectively. For point P,
2 is the abscissa and 1 is the ordinate.
For the data on the new Wearwell tires, the histogram is obtained

as follows. First we refer to Table 2.2. In Figure 2.2, mark off,
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Figure 2.2. Histogram for wear data for sixty new Wear well tires.
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along the horizontal axis, intervals corresponding to those in Table
2.2. For each interval we draw a " bar" at a height equal to the
number of observations in that interval.
The following characteristics of the histogram should be noted.
1. All intervals are of the same length. Because of this, the his-

togram gives a good idea of the" relative frequency" of getting
various mileages. If the first three intervals had been bunched
into one large interval, it would have had eight observations. A
bar of size 8 from 37.25 to 41.75 would give the misleading impres-
sion that a wear of 38.0 is as commonas one of 45.5. This is defi-
nitely not the case.
2. The intervals have mid-points which are three-digit numbm's

just like the tabulated data. It is convenient for the mid-points to
have no more digits than the tabulated data because a good deal of
computing which follows is then simplified. To select the intervals
to have such mid-points, one need only select one such mid-point
(such as 38.0) and make sure that the length of the interval has
the same number of digits after the decimal point. For example,
a length of 1.3 or 1.4 would have accomplished this aim.
3. The end points of the intervals have one more digit after the

decimal point than the tabulated data. This last digit is a 5, When
our intervals have this property, there is no doubt about which
interval an observation belongs to. Furthermore, each observation
is automatically inserted into the interval in which it would belong
had it not been rounded off. To achieve intervals with this char-
acteristic, it is necessary for the lengh to be odd. Hence the length
of 1.4 is not adequate but 1.3, 1.5, or 1.7 would accomplish the
desired results.
4. About ten intervals are used. This number can fluctuate for

several reasons. One should make sure that most intervals have
more than 4 or 5 observations. If there are very many observa-
tions, then it pays to select the intervals so as to increase both the
number of intervals and the number of observations per interval.
If there are very few observations, it does not pay to draw a his-
togram. One may achieve approximately a specified number of in-
tervals by subtracting the smallest observation from the largest
and dividing this by the desired number of intervals. The interval
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length should be slightly larger than this number. In our case we
wanted a length a bit larger than (52.0 - 37.4)(10 = 1.46.

In review, we want a fixed interval length which is odd (in the
units in which the observations are tabulated) and of a size so that
we have a reasonable number of intervals. A mid-point should be
selected so that it is convenient, Le., it has no more digits after
the decimal than the tabulated observations.
In the following we shall use the terms "cell" and "cell frequen-

cy" to mean interval and the number of observations in the inter-
val. The relative frequency is the proportion of the total number
of observations that lie in a given cell. In the cell 41.75-43.25 there
are nine observations which constitute 9(60 = 3(20 = 0.15 (or 15%)
of the total sample. Both frequencies and relative frequencies are
often useful.
The only information in Table 2.1 which is not available in Figure

2.2 is the precise disposition of the observations within each cell.
For most purposes, this loss of information is not serious and is
readily compensated for by the advantages of the pictorial repre-
sentation.

4. GRAPHICAL REPRESENTATIONS: CUMULATIVE
FREQUENCY POLYGON

A second graphical representation which is useful is that of the
cumulative frequency polygon. This representation is obtained as

TABLE 2.3
SUBDIVISION OF WEAR DATA FOR SIXTY NEW WEARWELL TIRES INTO INTERVALS

WITH CUMULATIVE FREQUENCIES (THOUSAND OF MILES)

Cumulative
Cell Cell Fre- Relative Cumulative Relative

Number Cells Mid-points quency Frequency Frequency Frequency

1 37.25-38.75 38.0 1 0.0167 1 0.0167
2 38.75-40.25 39.5 2 0.0333 3 0.0500
3 40.25-41.75 41.0 5 0.0833 8 0.1333
4 41.75-43.25 42.5 9 0.1500 17 0.2833
5 43.25-44.75 44.0 13 0.2167 30 0.5000
6 44.75-46.25 45.5 8 0.1333 38 0.6333
7 46.25-47.75 47.0 11 0.1833 49 0.8167
8 47.75-49.25 48.5 6 0.1000 55 0.9167
9 49.25-50.75 50.0 2 0.0333 57 0.9500
10 50.75-52.25 51.5 3 0.0500 60 1.0000
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follows. First, Table 2.2 is extended by inserting a columnof cumu-
lative frequencies. That is to say, a new column is added which
has the number of observations falling in all cells to the left of or
in the given cell. (See Table 2.3.)
The corresponding cumulative frequency polygon (Figure 2.3) is

obtained'as follows: For tire wear corresponding to cell boundary
37.25, put a dot at the horizontal axis (since zero observations were
less than or equal to 37.25). For tire wear 38.75, a dot is put at a
height of one unit since one observation was less than or equal to
38.75. For tire wear 40.25, a dot is put at a height of three units
since three observations were no larger than 40.25. Continue in
this fashion and connect successive dots by line segments.
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Figure 2.3. Cumulative frequency polygon for the wear of
sixty new Wear well tires.

The cumulative frequency polygon has the advantage that one
can readily compute the number of observations lying between any
two values. For example, the number of observations between
40.25and 47.75 is the difference between the corresponding heights,
i.e., 49 - 3 = 46. This method works for the case where the given
values correspond to points plotted. For other values, say 45, the
height of 31.33 is an estimate of the number of observations not
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exceeding the given mileage. In fact this estimate, which is not
even a whole number, is based on the tacit, although not necessarily
correct, assumption that the observations are evenly spread
throughout each cell.
Another advantage of this polygon is that it furnishes a con-

venient method of estimating the "percentiles" of the sample. A
percentile, say the 20th percentile of the sample, is the number
such that 20% of the observations are less than or equal to this
number, and the rest are no smaller. Referring to our cumulative
frequency polygon, we see that the 20th percentile of the sample
is approximately 42.42. A particular percentile of especial interest
is the 50th percentile of the sample, which is called the sample
median. According to our cumulative polygon, the median is ap-
proximately 44.75. Suppose that the observations had been listed
in ascending order (ordered observations). Then the median would

TABLE 2.4

ORDERED DATA: WEAR FOR SIXTY NEW WEARWELL TIRES ARRANGED

IN ASCENDING ORDER (THOUSANDS OF MILES)

37.4
39.1
40.1
40.4
40.6
40.7
41,3
41.5
41.8
41.9
42.1
42.3
42.6
42.6
42.8

42.9
43.1
43.3
43.4
43.6
43.6
43.7
43.9
43.9
43.9
44.1
44.2
44.4
44.5
44.7

44.8
45.0
45.2
45.5
45.5
45.8
46.0
46.1
46.3
46.4
46.7
46.7
46.9
46.9
47.0

47.2
47.5
47.7
47.7
47.9
48.2
48.3
48.8
48.9
49.1
49.8
50.3
50.8
51.2
52.0

be the observation which was in the middle of the list. However,
for our sample size 60, which is even, there is no middle of the list.
Then the median is considered to be halfway between the 30th and
31st ordered observation. In this case the 30th and 31st ordered
observations are 44.7 and 44.8, and the median is precisely 44.75,
which, accidentally, coincides with the above approximation. The
median has the property that as many observations exceed it as
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are exceeded by it. For an odd sample size, say 61, the median
would be the 31st ordered observation.
Data are called "grouped" when the records or tables present

only the numbers of observations in certain cells rather than the
original observations. Hence, Tables 2.2 and 2.3 and Figures 2.2
and 2.3 describe grouped data and suffer from the slight loss of
information described at the end of Section 3. In particular, the
cumulative frequency polygon is the grouped version of the so-
called cumulative frequency graph.
To prepare a cumulative frequency graph, it is necessary to ar-

range the data in increasing order of size. Table 2.4 shows the
data so arranged.

ro 1m

The cumulative frequency graph, presented in Figure 2.4, gives
the exact number of observations less than or equal to a given
value; for example, the height of the graph at 43.9, 43.95, 44.0,
44.08 is 25 because, as can be seen from Table 2.4, there are just
25 observations which are no larger than 43.9, and the same 25are
also nolarger than 43.95or 44.0 or 44.08, but there are 26 observa-
tions no larger than 44.1, so the graph rises by one step at that
point.
This graph is necessarily similar to the grouped representation,
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Figure 2.3. If samples are very )Omall,then the cumulative fre-
quency graph is preferable to the cumulative frequency polygon.
But if samples are large enough to justify grouping data, the
polygon is to be preferred because it is much easier to draw, and
can be constructed by cumulating the frequencies obtained from
tallying the observations. In large samples, tallying is easier than
preparing the list of ordered observations.

*Exercise 2.3. Draw a histogram and cumulative frequency
polygon for the 75 observations in Table 2.5 on annual rainfall on
the MacDonaldnylon farm in South Phiggins. South Phiggins has
the following interesting geographic features. The soil is uniform
throughout the region and will allow the growth of an amount of
nylon proportional to the annual rainfall. No other crop can be
economically grown on this soil. Secondly, the rainfall is affected
considerably by small variations in location. Hence the value of a
farm is dependent upon its "average" annual rainfall, and for 75
years the annual rainfall on each farm has been recorded by law
by the county clerk.

TABLE 2.5
ANNUAL RAINFALL ON THE MACDONALD NYLON FARM 1881-1955 (INCHES)

Year Rainfall Year Rainfall Year Rainfall Year Rainfall
1881 717 1901 887 1921 798 1941 651
1882 811 1902 805 1922 747 1942 939
1883 748 1903 773 1923 760 1943 881
1884 848 1904 766 1924 729 1944 791
1885 943 1905 752 1925 791 1945 737
1886 643 1906 619 1926 788 1946 703
1887 754 1907 824 1927 831 1947 754
1888 874 1908 635 1928 834 1948 853
1889 820 1909 673 1929 780 1949 723
1890 905 1910 824 1930 843 1950 685
1891 751 1911 987 1931 826 1951 844
1892 802 1912 931 1932 872 1952 881
1893 583 1913 816 1933 617 1953 756
1894 629 1914 754 1934 796 1954 820
1895 747 1915 861 1935 792 1955 801
1896 885 1916 733 1936 951
1897 661 1917 739 1937 668
1898 818 1918 638 1938 760
1899 763 1919 920 1939 805
1900 766 1920 808 1940 809
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Exercise 2.4. The cumulative frequency polygon is a useful tool
for graphically comparing two sets of data; for this purpose it can
be much more suitable than the histogram. Below are two frequency
distributions, presenting (in grouped form) the heights (in inches)
of 50 men and 40 women enrolled in the same statistics course.
(see Tables 2.6 and 2.7.)
(a) Complete the two tables by calculating and entering the rela-

tive frequencies and the cumulative relative frequencies.

TABLE 2.6
HEIGHTS OF FORTY WOMEN (INCHES)

Cumulative
Relative Relative

Mid-point Interval Frequency Frequency Frequency

62 61.5-62.5 2
63 62.5-63.5 4
64 63.5-64.5 7
65 64.5-65.5 10
66 65.5-66.5 8
67 66.5-67.5 5
68 67.5-68.5 3
69 68.5-69.5 0
70 69.5-70.5 1

TABLE 2.7
HEIGHTS OF FIFTY MEN (INCHES)

Cumulative
Relative Relative

Mid-point Interval Frequency Frequency Frequency

63 62.5-63.5 1
64 63.5-64.5 0
65 64.5-65.5 3
66 65.5-66.5 5
67 66.5-67.5 4
68 67.5-68.5 6
69 68.5-69.5 4
70 69.5-70.5 5
71 70.5-71.5 7
72 71.5-72.5 5
73 72.5-73.5 4
74 73.5-74.5 4
75 74.5-75.5 0
76 75.5-76.5 2
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(b) In one graph plot the two histograms using relative frequen-

cy for the ordinate. (If this is correctly carried out for these data,
the two histograms will overlap each other.)
(c) Plot the cumulative frequency polygons for the two samples

together on a second sheet of paper. Use relative frequency for
the ordinate so that both polygons will rise to the same height.
Note how (c) is more useful than (b) for comparing the two

samples.

5. DESCRIPTIVE MEASURES: SUMMATION

For the example of wear for 60 tires, there are a couple of
numbers or measures which indicate much of the essential informa-
tion contained in the entire sample of 60observations. One of these
measures is the sample mean or average. In the above example,
the sample mean is

40.1 + 47.5 + 46.9 + ... + 44.8 = 45.008.
60

In general, the sample mean or average is defined as the sum of
all the observations divided by the number of observations in the
sample. To deal with this measure, and at least one other important
one, it is convenient to introduce the summation and subscript
notation.
If a typical observation is labeledI X, and it is desired to dis-

tinguish between successive observations, we can do so by labeling
the first XI (read X sub one), the second X" the third X3, etc. In
general the ith observation would be Xl' If there are 60 observa-
tions, the last will be Xeo' If there were n observations, the last
would be Xn• We represent the sum of these observations by either
n
EXl (read aloud as "summation from one to n of X sub i") or
i-I

I Throughout this book we shall indicate observations or numbers which can be
obtained from observations by boldfaced symbols. This use of a different kind of
print enables and indeed requires one to distinguish random quantities. This is es-
sential to clear thinking in statistics. Since boldfaced symbols cannot easily be
written, we recommend for use on paper or at the blackboard that the boldfaced
symbols be replaced by a corresponding symbol with an extra line through it. For

example, we can use, YI.,YI, $, iP for X, Y, 8, p.
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X, + X, + X3 + ... + X"-l + Xn
or sometimes by slightly modified versons of the last two forms.
The reader may note that for n = 2

n

EXt = X, + X,
i-I

and it seems ridiculous, and even slightly misleading, to use the
notation

X, + X, + X3 + ... + Xn

in this case. Nevertheless, there are situations where we do not
wish to specify the value of n and the latter representation will be
very useful because of its suggestiveness.
In the notation t Xl>the symbol i represents the possible values

1-1
of the subscript. These are the integers from 1 to n. If for some
reason we could not use the symbol i, we could represent these
possible values by the subscript j or by some other symbol which

n
has not previously been assigned somemeaning. Then E Xj would

j-I

indicate the same sum. The letter i has no special significance
since

4 4

E Xl = E Xj = X, + X2 + X3 + X4•
i-I j-l

If for some reason it was decided to have only the sum of those
n

X's with subscripts between 5 and n, we would write E Xl' More
'£=,5

generally, for the sum of those X's with subscripts between
m and n inclusively, we have the representations

n

EXI = Xm + Xm+l + Xm+2 + ... + Xn•
i=m

If there are two types of observations being taken simul-
taneously, we may label them Xl' YIPX2, Y2, "', Xn, Yn• Then we
may apply our notation to represent the sum of all the X + Y's as
follows:
n

E (XI+Y1) = (X,+Y,)+ (X2+Y,)+ (X3+Y3) + ... + (Xn + Yn).
1-1
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We shall also be interested in expressions such as
n

E X: = X~+ X; +X:+ ... + X~
1-1

which represents the sum of the squares of the X's,
n

E aX, = aX1 + aX2 + aXa + ... + aXn
'-1

which represents the sum ofaXl> aXu aXa, etc., and

31

n

E (X, - a)2 = (Xl - a)2 + (X2 - a)2 + (Xa - a)2 + ... + (Xn - a)2.
'-1
Exercise 2.5. For a sample of heights in inches (X) and weights

in pounds (Y) of n = 7 West Phiggindians, we obtain

Xl = 48, Y1 = 207;
Xa = 52, Ya = 210;
X5 = 48, Y5 = 200;
X7 = 52, Y7 = 200.

Evaluate:

X2= 50, Y2= 200;
X. = 50, Y, = 207;
Xa = 50, Yo= 210;

n n n n n

E XII E Y" E (X, + Y,), E 20X" and E(X, - 50)2.
'-1 1-1 '-I '-1 '-1

The following equations are often useful in the applications of
the summation symbol.

(2.1)

(2.2)

(2.3)

n n n

E(X, + Y,) = EX, + EY,.
'-I 1-1 1-1

n

Ea = na.
1-1

They may be explained in terms of the following simple inter-
pretations. If the X's add up to 10and the Y's to 20, the (X + Y)'s
should add up to 30. If the X's add up to 10, tripling each X will
triple the sum. Adding a number a = 3 to itself, n = 10 times will
give na = 30. Please note that for Equations (2.2) and (2.3), the
important respect in which a differs from the X's and Y's is that it
does not change when i changes.
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One may easily derive these equations. Equations (2.1) is
developed thus:

I!

(2.1) E (Xl+ YI)=(X,+ Y,)+(X.+ Y.)+(Xg+ Yg)+ ... +(Xn+ Yn).
l~}

Rearranging the terms so that the X's are next to one another,
we have

n

E (Xl + Yi) = (X, + X. + Xg + ... + Xn)
I.J

+ (Y, + Y. + Yg + ... + Yn)

Equation (2.2) is shown in the following way:
II

(2.2) EaXi = aX} + aX. + aXg + ... + aXn
;,-t

n

= a(X, + X. + Xg + ... + XI!)= aEXl
i-I

Equation (2.3) is shown by:
I!

(2.3) Ea = a + a + a + ... + a = na.
l"'l ....•---- -

n times

*Exercise 2.6. Use the summation symbol to abbreviate the fol-
lowing expressions:

(a) Xi + X~+ X; + X~+ X;
(b) Xl + 2X. + 3Xg + ... + nXn
(c) F(x - 1) + 2'(x - 2) + ... + 7'(x - 7).

7 7

*Exerc?~8e 2.7. Given that E Xl = 17 and E Xi = 53, find
i.-I i-I

7

(a) .E (Xl - 2)
i-I

7

(b) E (2Xj + 1)
.1-1

7

(c) E (XI + 3)".
}-1

Exercise 2.8. Compute
10

(a) Ei
i-'

, 4

(b) E (i + I)' (c) E (j" + 4).
1=2 j-1

Exercise 2.9. Let x, = 4, x. = 3, Xg = 1, x. = 3, Y, = 2, Y. = 0,
Yg = - 2, Y. = - 4. Compute
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4 4 l 4

(a) EX1 (b) EYI (c) E(x1 + YI)
1=1 ~~I-I I-I
4 4j" 4

(d) Ex; (e) Ey; (f) E (XI + YI)2
i=1 l=1 I-I
4

(g) E (Xl - Yl)~'
[ •••1

Exercise 2.10. Given only that E Xi == 17 and EX; == 53, which
~1i-I i •••J

of the following expressions canjbe evaluated? Evaluate them.
1 1 1

(a) E(X1 + Xi) (b) EXi+ 2EX" (c) EiXI
1=1 I-I i .1"'1 i .••1

1 1 J 1

(d) E0 + X,) (e) E0,+ X,)" (f) E (2+ X1)3.
.1-1 .1=1 1=1

*Exercise 2.11. Either derive,:or illustrate with simple examples
three of the following equations)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

n n 1l n.

E(X1 + Y1 +ZI)= EXI + EY1 + EZI
I-I I~I 1=1 1-1

n n \ n
E(Xi - Y;)= EXI,- EYi
1=1 i-I 1=[

n n. n

E(aXI + bYi) = a,DX1 + bE Y1
;=1 l-1 i=1

n n

E (a + bXI) = na + bE Xi
i-I i~l

n n n
E(Xi - a)2 = EX; -;-2aEXI + na2.
l=1 £""11 £ •••1

6. DESCRIPTIVE MEASURES: SAMPLE
MEAN AND VARIANCE

Previously we mentioned the sample mean as an important meas-
ure associated with the sample.' Referring to the definition given
(sum of observations divided by sample size), we see that we could
denote the sample mean of a sample of n observations Xl>X" X3,

"', Xn by

(2.9)
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In the example of the wear of 60Wearwell tires, the sample mean
has a good deal of significance. Consider the manager of a large
fleet of taxis who has to decide on what brand of tires to use. The
sample mean divided by the cost per tire is a good indication of
how many miles of use he can expect (on the average) per dollar
invested in Wearwell tires. In this case, the sample mean is a very
relevant measure of what constitutes a "typical" wear for Wear-
well tires.
The problem which faces an individual motorist is somewhat dif-

ferent. Onone hand, he would like to average a great deal of wear
per tire. On the other hand, his costs are affected by the savings
which he can make if he trades in five old tires simultaneously for
five new ones. If it should happen that the tread on two of his tires
wears out at 37,000miles, while the tread on the others seems only
two-thirds worn out, then he may have to buy his new tires indi-
vidually. It is clear that he would be willing to accept some sacri-
fice in average mileage per tire if he could reduce the variability
in the mileage. A measure of variability is of interest to him.
Variability in a sample may be interpreted visually as spread

among the points along a line where each point represents the value
of an observation. Thus Figure 2.5 depicts the following samples.

Sample A 15, 16, 17, 19, 20
B 13,16,17,19,22
C 13,14,17,21,22
D 15, 16, 19, 23, 24

I I
15 20

C --------+----__+0---40>------

D----- -_~ _

I
10

I
15

I
20

I
25

Figure 2.5. Graphical representation of four samples.

Study of the figure shows that sample A is the least spread out,
samples C and D are equally spread out (one graph is exactly the
same as the other except for being shifted two units). The spread



DATA PROCESSING 35
of sample B is between that of A and the other two. "Spread" or
"variability" or "dispersion" can be measured in various ways.
One generally useful measure of variability is the sample standard
deviation dx. This measure is obtained as follows. The sample
variance (or average squared deviation from the mean) is given by

(2.10)

The sample standard deviation dx is the positive square root of
the variance.l It is clear that dx measures spread, because, if the
observations are close together (little spread), they will be close to
their mean X, and d~ will be the average of quantities which are
small. On the other hand, if the observations are spread far apart,
they will tend to be far from X, and d~ will be the average of
quantities which are large. The four samples A, B, C, and D have
standard deviations of 1.855, 3.007, 3.611, and 3.611 respectively.
The Wearwell tire data yield dx = 3.096 (thousands of miles).
The following five results express basic and important properties

of the sample mean and standard deviation.

(2.11)

(2.12)

(2.13) If Yi = a + XlJ then Y = a + X and dy = dx•
(2.14) If VI = bXlJ where b is positive, U = bX and du = bdx.

(2.15) If WI = a+ bXI, wherebis positive,W = a+bX and dw=bdx.

Equation (2.11) expresses the fact that the sum of the deviations
from the sample mean is zero. This is easy to show since

1 For technical reasons, most statisticians find it more convenient to define and
use 8X and 8~ for the sample standard deviation and variance where

2 1 n - n 2
8x = n _ 11~' (Xi - X)' = n _ Idx.

For reasonably large sample size it makes very little difference whether 8X or dx
is used. Since most statisticians prefer to use Sx, we shall mean 8X and si when
we use the terms "standard deviation" and "variance" in later chapters. In this
chapter, we shall continue to use the slightly simpler measures dx and dx.
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nE (Xl - X) = (Xl - X) + (X. - X) + ... + (Xn - X)
1-1

= (Xl + X. + ... + Xn) - nX = nX - nX = O.

Equation (2.12) is derived in Appendix EI and states that variance
d~ is the average square minus the square of the average and is very
useful for computation. (On the other hand, it is seldom very help-
ful in theoretical work such as deriving the properties of Equations
(2.13) through (2.15». We illustrate the convenience of using Equa-
tion (2.12) by calculating in Table 2.8 the variance of a sample from
both the definitional equation and the above result.

TABLE 2.8

VARIANCE

Use of Definitional Equation

Xl Xl-X (Xl-X)'

1 4 -1.167 1.362
2 3 -2.167 4.696
3 5 -0.167 0.028
4 8 2.833 8.026 d~ = 2.472
5 6 0.833 0.694
6 5 -0.167 0.028

Sum 31 14.834
Average 5.167 2.472

Calculation Equation

Xl
,

Xl

1 4 16
2 3 9

di = 1~5 _ (~ )'3 5 25
4 8 64

=~=2.4725 6 36 36
6 5 25

Sum 31 175
Average 5.167 29.167

For a long list of data, the task of computing and squaring the
individual Xl - X in the first method is very tedious. The second
method is especially well adapted for computation with a desk

n n
calculator with which bothEXl and EX~are easy to obtain.

i-I (-1

The results of Equations (2.13) through (2.15) state that if 10
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(representing 10,000miles) were added to the wear of each tire, the
average wear would be increased by 10, but the standard deviation
would be unaffected. This statement may also be interpreted
graphically. Adding 10 to each observation merely shifts the his-
togram 10units to the right. Thus the "center" or "typical value"
is shifted 10 units but the spread is not affected. If the wear of
each tire were tripled, both the average and the standard deviation
would triple. (The variance would be multiplied by nine.) Equation
(2.15) is a combination of the other two equations. In other words,
if first we triple the wear X! and then add 10, we get a wear which
is 10 + 3X!. It is clear that the new average is obtained by tripling
the old average and then adding 10. The new standard deviation
is obtained by merely tripling the old. These results may also be
used to simplify computations. For example, subtracting a constant
does not affect the standard deviation. Thus in samples A, B, C,
and D we can subtract 17or some other appropriate number before
computing d~. The new numbers so obtained are smaller in
magnitude, easier to work with, and, incidentally, are less
sensitive to rounding off errors.
Exercise 2.12. Either derive or use the sample 2, 4, 5, 6, 8 to

illustrate:
(a) Equation (2.11);
(b) Equation (2.12);
(c) Equation (2.13).
Exercise 2.13. Compute d~ for samples A, B, and D in Section 6.
Exercise 2.14. Compute the mean and standard deviation for the

sample of height of seven West Phiggindians (see Exercise 2.5). A
table of square roots may prove convenient. (See Appendix Bj.)

*Exercise 2.15. Why would a prospective buyer of Mr. Mac-
Donald's nylon farm in South Phiggins be especially interested in
the mean and standard deviation of the annual rainfall? What sort
of buyer would be relatively uninterested in the standard deviation?
(See Exercise 2.3.)
Exercise 2.16. The lengths of five cat tails are 12, 14, 16, 10, and

8 inches respectively. For this sample, compute the mean, median,
variance, and standard deviation.
Exercise 2.17. Compute the standard deviation of the five num-

bers 137,139,141,140 and 142. Hint: It is convenient to subtract
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some common number from each of the above since doing so does
not change the standard deviation, and smaller numbers are easier
to work with.
Exercise 2.18. Show that:

n n

E (XI - a)' = E (XI - X)' + n(X - a)'.
1-1 /-1

For what value of a will the above sum of squares be minimized?
Hint: (XI - a) = (XI - X) + (X - a).

t 7. SIMPLIFIED COMPUTATION SCHEME FOR SAMPLE
MEAN AND STANDARD DEVIATION

USING GROUPED DATA

In Table 2.9 we present a simplified scheme for computing the
mean and standard deviation, using grouped data. Since the data
are grouped we shall for computational simplicity assume that all
the observations in a cell are at the mid-point of this cell. As long
as the length of the cell interval is small, this assumption cannot
lead to any serious error. Fundamentally the method is an appli-
cation of Equations (2.12) and (2.15), but for our purposes it will
suffice to illustrate the method, leaving the explanation of why it
works to Appendix E,.
In Table 2.9 appears a column labeled "associated values" which

are designated by WI' This column increases by increments of one
and has the value zero for an arbitrarily selected cell, preferably
near the middle. The frequenceis, f, are displayed in the columns
to the right of the WI' The typical element of the next column is
f,w" The last column is obtained by multiplying flw, by WI'

k k

ComputeE f,w, and E f,w~, where k is the number of cells.
1-1 1-1

We compute

d' 1 ~ f' W-,w = - £..J ,WI-
n 1-1

t Sections marked with a dagger may be bypassed at the discretion of the instruc-
tor. The method discussed in this section plays an important role in the practice of
handling data but will not be caned for again in this book. However, the pre-
sence of this section ought to be pointed out to prospective users of data.
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16
18
20

9
o
8
44
54
32
75

276

-4
-6
-10
-9
o
8

22
18
8
15

42

1
2
5
9
13
8
11
6
2
3

n=60

38.0
39.5
41.0
42.5
44.0
45.5
47.0
48.5
50.0
51.5

Cell
Mid-point

XtCells

Sums

37.25-38.75
38.75-40.25
40.25-41. 75
41.75-43.25
43,25-44.75
44.75-46.25
46.25-47.75
47,75-49.25
49.25-50.75
50.75-52.25

TABL~2.9
j

COMPUTATION OF MEAN AND STANDARD DEVIATION FOR A SAMPLE OF WEAR FOR

SIXTY WEARWELL TIRES USING GROUPED DATA (THOUSANDS OF MILES)
'I

Associated
Values Frequency
Wt;1 ft

-41
-3:
-21
-Li

0'1
"Iii

2!,1
3'1

4;1
5'

!

k = number of cells = 10
- 1 k 42W = - L fiWt = - = 0.7

n t~l 60
1 k 2 276- L ftWt = - = 4.6
nt_t 60
d~ = 4.6 - (0.7)2= 4.11
dw =2.027

n = number of observations = 60
a = 44.0
b = 1.5
X = 44.0 + (1.5)(0.7)= 45.05

dx = (1.5)(2.027)= 3.041

I
and dw is the positive square rootiof d~. Then a is the value of
Xt for the cell where Wt = 0 and bjs the length of the cell interval
(the difference between any two ~hccessive mid-points).

- ',1-x= a 7- bW, '

dx = bd-w

which completes the computation.;1
For the example of tires, note how the results for the grouped

data compare with those for the': more precise ungrouped data.
There :i

X = 45'.008
I

dx = 3.096.,
Note that Table 2.9 containRall t~e information in Table 2.2.
Exercise 2.19. Using grouped d~ta, compute the sample mean

and standard deviation of annual r~infall on Mr. MacDonald's nylon
farm in South Phiggins. (See Exe~cise 2.3.)

"
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Exercise 2.20. Compute the sample mean and standard deviation
of the heights of 40 women as given in Table 2.6.
Exercise 2.21. Compute the sample mean and standard deviation

of the heights of 50 men as given in Table 2.7.

8. SUMMARY

The histogram and cumulative frequency polygon are convenient
graphical methods of treating grouped data.

n

EX! = Xl + X2 + Xa + ... + Xn
!-1

is defined as the sum of the n X's.
The sample mean, standard deviation, and variance are given by

X, dx, and d~ where

X = 1.t X! = Xl + X2 + ... + Xn
n 1-1 n

and Table 2.9 gives a convenient method of computing these quan-
tities for grouped data.
The sample mean is a measure of an average or typical value.

The sample standard deviation is a measure of the variability of
observations in the sample. The variance, which is the square of
the standard deviation, is defined as the average squared deviation
from the mean.
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CHAPTER 3

Introduction to Probability
and Random Variables

1. INTRODUCTION

In the contractor example we indicated that the state of nature
did not uniquely determine the observations. Thus, two customers
who both need 15-amp wiring might give different responses to
the contractor when asked how much they would need. In fact,
we assumed that half of the customers who need 15-amp wiring
would, when questioned, say that they use at most 10amp, and half
of these customers would respond 12 amp. In this case, the con-
tractor could reasonably say that the probability is one-half that
a customer who needs 15amp will respond 10amp. We made much
use of this probability, which measured the randomness type of
uncertainity. In this chapter, we discuss some of the ideas involv-
ed in the notion of probability and random variables with a view
to applying them to problems in decision making.

2. TWO EXAMPLES

For a preliminary illustration, we shall discuss two examples
which have as their main assets their simplicity and possible ap-
plications in certain gambling situations. They are useful as illust-
rations of the notions of probability and random variables though
their applicability in statistics is limited.
Example 8.1. Mr. Sharp purchased a pair of dice from a firm

which advertises novelties designed to "amuse and entertain your
friends." One of these dice is green and the other red. Each die
is a cube with six faces numbered one to six. Mr. Sharp plays
craps with his friends. In this game, the dice are rolled and one
adds the numbers showing on the two upward faces. The number
seven plays a prominent role in this game, and Mr. Sharp has

41
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observed that with his new dice this number appears as the sum
about 30% of the time. It is interesting that in this game the initial
roll of a seven is desired by the thrower. However, if the first roll
is not a seven, the subsequent roll of a seven is deplored. At first
Mr. Sharp's friends are elated at the frequency with which their
initial rolls give sevens. They usually end up having lost all their
money.

In this example, let us focus our attention on the act of rolling
the dice. We may consider this act as the performance of an ex-
periment the outcome of which is not determined in advance. As-
sociated with the outcome of this experiment is a number X, name-
ly, the sum of the numbers on the faces showing. In general a
number X determined by the outcome of an experiment is called
a " random variable."

Because of the interest in the game of craps, Mr. Sharp is es-
pecially interested in the frequency with which X is equal to seven
when his experiment is repeated many times. Since this happens
about 301}0 of the time, Mr. Sharp is tempted to claim that the
probability that X is equal to seven is 0.3. We shall think of pro-
bability as follows.
If the proportion of times that X is equal to seven tends to get

very close to 0.3 as the experiment is repeated many times under
similar circumstances, then we shall say that the probability that
X is equal to seven is 0.3 and we shall write

P{X = 7} = 0.3.

*Exercise 3.1.' In order to illustrate the notion of probability, it
would be desirable to repeat the above experiment several million
times and find the proportion of times that X = 7. Instead we shall
take fewer observations and save the expense of buying dice, by
using coins. Toss a nickel and a penny, observe the results, count
the number of heads, and repeat 100 times. Construct a chart as
follows. The last column mn/n represents the proportion of times
X = 1 in the first n trials. Draw a graph where the horizontal scale
gives n and the vertical scale mn/n. Plot the points (n, mn/n) for
n = 4, 8, 12, ... , 100 and connect adjacent points by straight lines
as in the diagram following the chart.

1 Exercises 3.4 and 3.8 depend on the data obtained here. If these exercises
are to be assigned, Exercise 3.1 should not be turned in until they are completed.
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mn = Number
ofTimesX=1

n X = No. of in the First n
(Trial) Nickel Penny Heads Trials mn/n

1 H H 2 0 0
2 H T 1 1 0.5
3 H T 1 2 0.667
4 T H 1 3 0.750
5 T T 0 3 0.600
6 H H 2 3 0.500
7 H H 2 3 0.429
8 T T 0 3 0.375

4 8
n

12 16

Doesmn/n seem to tend to be very close to some number as n gets
large? Would this tendency be very strongly affected if the X's for
the first ten repetitions of the experiment were arbitrarily replaced
by O? Do not cheat. For future reference, count the total number
of times X is equal to zero and to two respectively.

It should be emphasized that there is a certain amount of sim-
plification of reality in our treatment of probability. It would be
impossible for Mr. Sharp to repeat indefinitely the experiment of
dice rolling under similar circumstances. In fact, after 6 billion
rolls, the dice would be so worn that the circumstances could no
longer be considered similar. This minor difficulty does not prevent
Mr. Sharp from using his new dice.

Frequently, dice manufacturers go to great effort and expense
to obtain dice which are well balanced. They feel that, for a well-
balanced die, one side should show up almost as frequently as an-
other. Let us designate the outcome of the roll of two dice by two
numbers, where the first corresponds to the green and the second
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to the red die. If Mr. Sharp's dice were well balanced, all the out-
comes (1, 1), (1, 2), (1,3), (1, 4), (1, 5), (1,6), (2,1), (2,2), (2,3), (2,4),
(2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2),
(4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6),
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6) should occur with relatively
equal frequencies. Of these 36 possible outcomes, the following six
(1,6), (2,5), (3,4), (4,3), (5,2), (6,1) lead to X= 7. Consequently,
if the dice were well balanced, one would expect X = 7 about
6/36 = 1/6 of the time, i.e., 16.67q0 instead of 30%.
In fact, to get a die well-enough balanced to suit professional

gamblers is quite difficult, and such dice are expensive. For such
dice it may be assumed that P{X = 7} is approximately 1/6. In the
future when we talk about "well-balanced dice," we shall approxi-
mate reality by assuming not only that the dice were carefully
constructed but also that each of the above outcomes has probabili-
ty exactly 1/36 and PIX = 7} is actually equal to 1/6. This kind
of idealization is very useful in general, although occasionally
someone has made a pile of money by detecting that a supposedly
well-balanced gambling device was not really very well balanced.
Example 3.2. Mr. Sharp recently put his expert knowledge to

work at the town fair by installing a dial at a gambling booth. The
circumference of this dial is labeled with numbers from zero to one.

0,1.0

0.5

Figure 3.1. Mr. Sharp's dial.

These numbers are evenly spaced so that 0.5 is half way around
the dial from zero. A long pointer is balanced at the center of the
dial and, when spun, circles around and around the dial, finally
coming to rest at some position. (See Figure 3.1.) If we treat the
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spin of the pointer as the experiment, a random variable of
interest is X equal to the number corresponding to the position at
which the pointer comes to rest.

Since Mr. Sharp will give away a teddy bear whenever X lies
between 0.4 and 0.6, i.e., whenever 0.4 ~ X ~ 0.6, there is much
interest in the frequency with which X satisfies this condition or
restriction.1 Mr. Sharp has managed to modify the pointer mecha-
nism slightly so that this will happen only 7.3% of the time. That
is, we may say that

P{O.4 ~ X ~ 0.6} = 0.073.

Before Mr. Sharp's modification, the pointer was carefully con-
structed, and the makers felt that most professional gamblers
would be satisfied that it was sufficiently well balanced. For them
this would mean that in many trials (repetitions) of the experiment
one would obtain 0.4 ~ X ~ 0.6, about 20% of the time. In fact,
the probability that X would lie in any interval should be close to
the length of the interval.

*Exercise 3.2.' For lack of well-balanced pointers and carefully
marked dials, we shall simulate an ideal wheel and pointer by a
table of random numbers. (See Appendix C1.) The table was con-
structed as though an ideal ten-faced die with faces numbered 0, 1,
2, 3,4,5,6, 7,8, and 9 was rolled many times, and the results were
recorded. Because of this construction, it can be shown that the
first four digits may be assumed to be the first four digits of X for
an ideal dial. The next four digits will correspond to the X for the
next trial, etc. Thus the first two simulated spins yield 0.0347 ...
and 0.4373 . . .. Use the table of random numbers to simulate an
ideal dial. As in Exercise 3.1, construct a chart tabulating the
values of X in 100trials. Let mn be the number of times 0.4~X~0.6
in the first n trials. List and then plot mnln for n = 4, 8, 12, ... ,
100.

The dial example represents one which differs from the dice ex-
ample in an important respect. In the dice problem, the possible
I The symbols ,s;: and :2: are read •• less than or equal to" and .• greater than

or equal to," respectively. If" less than" and .• greater than" are desired, we
use the symbols < and>. Thus the inequalities 0.4,s;: X ,s;:0.6 represent the con.
dition that X is between 0.4 and 0.6 inclusive.

2 Exercises 3.5 and 3.12 use the data obtained in this exercise.
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values of X were 2,3,4,5,6,7,8,9,10,11, and 12, and these are
separated from one another, whereas in the dial problem the possi-
ble values of X were all the numbers between 0 and 1 and repre-
sented a "continuous" range. In the first case, X is called a dis-
crete random variable, whereas in the secondcase it is called a con-
tinuous random variable. We shall say a bit more about this dis-
tinction later.

3. PROBABILITY DISTRIBUTIONS AND CUMULATIVE
DISTRIBUTION FUNCTIONS

In the examples of the previous section, we were interested in
whether X satisfied certain conditions or not. In the dice problem
we were interested in whether X = 7 or not, and in the dial prob-
lem whether 0.4 :::::;X :::::;0.6 or not. If one were to play craps or
to use dice in a variety of ways, one would be interested in other
possibilities. For example, the craps player may be interested in
the probability that X = 2, the probability that X = 3, the proba-
bility that X = 11, the probability that X = 12, and the probabili-
ty that X = 4 or 10. As for the dial problem, Mr. Sharp revived
interest in his game by offering a toy electric train to anyone who
obtained an X between 0.29 and 0.31 or between 0.79 and 0.81,
and a new automobile to anyone who obtained X= 0.1. Obviously
he and his customers were interested in the probability that X
would satisfy certain other conditions than 0.4:::::;X :::::;0.6. We
shall be interested in the probalrility distribution of our random
variables. The probability distribution of a random variable X is
the rule which assigns a probability to each restriction on X. To
illustrate, let us take the example where X is the number of heads
in the toss of an ideal nickel and penny. The possible outcomes of
the experiment can be denoted (H, H), (H, T), (T, H), and (T, T).
For these possible outcomes, the corresponding values of X are 2,
1, 1, and 0 respectively, and hence we have

P{X = 2} = 1/4
P{X = 1}= 1/2
P{X = O} = 1/4
P{X = 1 or 2} = 3/4
P{X = 0 or 2} = 1/2
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P{X = 0 or 1} = 3/4
P{X = 0,1, or 2} = 1.

In this experiment there are !~ssentiallyno other possible rest-
rictions on Xand the above list represents the probability distribu-
tion of X.

For the ideal dice example, we list a few of the probabilities that
characterize the probability distribution of X:

P{X = 2} = 1/36
P{X = 3} = 2/36

P{X = 12} = 1/36
I

P{X = 2, 3, or 12} = 4/36
!:

P{X = ,7 or ll} = 8/36.
Ii

For the ideal dial example, we ~lso list a few of the probabilities
that characterize the probability,ldistribution of X:

:1

P{OA ~ X ~ 0.6} ::= 0.2
P{0.29 ~ X ~ 0.31' or 0.79 ~ X ~ 0.81} = 0.04

I'
P{0.09 ~ X ~ O.U} = 0.02

II
P{0.099 ~ X ~ O.lOl} = 0.002

'!

P{0.0999 ~ X ~ 01l001} = 0.0002
P{X = 0.1} = 0.1

In the dial example it is clearl~ impossible to list all conditions
which can be imposed on X and th'e corresponding probabilities. On
the other hand, it is quite clear hbw the listed values were obtain-
ed and how the method could be ~pplied to many other restrictions.

It is an important convenience to realize that the probability dis-
tributions can be summarized cori~iselyby the" cumulative distri~.
bution function." The cumula.tive distribution function (cdf), F,
gives the probabilities for restrictions of the form X ~ a. For the

"coin example, ..

PIX s:'iO} = 1/4
P{X ~n} = 3/4

,j

P{X ~,2} = 1.

In more detail:
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P{X :::;;a} = 0 for a < 0
PiX :::;;a} = 1/4 for 0 :::;;a < 1
PiX :::;;a} = 3/4 for 1 :::;;a < 2
P{X:::;; a} = 1 for 2 :::;;a .

This cdf is represented by the graph in Figure 3.2. For the coin
problem the probability distribution is so simple that the cdf repre-
sents no gain in the way of conciseness. Note that, at a = 0, 1,
and 2, the cdf jumps. The values of the cdf at a = 0, 1, and 2 are
consequently marked by heavy dots.

1.00r----,---,----,----,-- __-__.
tl 0.751---+--1---+---j---f----l

r.<. ~I 0.50I---+-~I---t---j--+----l

~ 0.251---+--1--+---j--+----l

0•.••.•---'---'----'----'---'-----'
- 0.5 0 0.5 1 1.5 2 2.5

a

Figure 3.2. Cdf F for X equal to the number of heads
in the toss of two ideal coins.
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Figure 3.3. Cdf F for X equal to the sum of the two
faces showing in the roll of two ideal dice.

The cdf for the ideal dice example is given in Figure 3.3. Here
we have essentially gained in conciseness for it would be a rather
long undertaking to list all probabilities. This conciseness would
be of little advantage if it were not possible to recover the prob-
ability distribution from the cdf. In fact, it is possible to do so,
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for one may find P{X = 2} by taking the jump in the cdf at a= 2.
Similarly, one may find P{X = 3}, P{X = 4}, etc. To find
P{X = 2, 3, or 12}, one need only add P{X = 2} + P{X = 3} +
P{X = 12}.

In the continuous case, the use of the cdf is a great advantage.
For the ideal dial problem, the cdf is given in Figure 3.4. The
reader should check a few points on this graph. For example,
it is obvious that

P{X::;; - 0.1} = 0
P{X::;; O} = 0

P{X ::;;0.3} = 0.3
P{X ::;;0.9} = 0.9
P{X ::;;1.0} = 1.0
P{X ::;;1.7} = 1.0, etc.

F
plX:5al

a

Figure 3.4. Cdf F for X equal to the outcome of the
spin of an ideal dial.

How can the cdf be used to compute probabilities? This ques-
tion is essentially answered by the following: "A rise in the cdf
corresponds to P1"obability." Thus in the coin problem, P{X = 1}=
1/2, because the cdf rises by 1/2 when the abscissa (horizontal
position) is at one. In the dice problem, P{5.3 ::;;X ::;;7.2} = 11/36
= 0.306 because the cdf rises by 11/36 as the abscissa (horizontal
position) moves from 5.3 to 7.2. In the dial problem, P{0.29::;;
X::;; 0.31} = 0.02 because the cdf rises by 0.02 as the abscissa
goes from 0.29 to 0.31. We get

P{0.29 ::;;X ::;;0.31 or 0.79::;; X ::;;0.81} = 0.04

by adding the probabilities that X will fall in these two nonover-
lapping intervals.
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Exercises 3.4 and 3.5 illustrate that the cumulative frequency
graph for a large sample of observations of a random variable
tends to resemble the cdf.
Exercise 3.3. Figure 3.5 shows the cumulative distributions of

three random variables.. Curve A is the cdf of X and shows
P{X:,,::: a}. Curve B is the cdf of Y and shows P{Y :":::a}, and
P{Z :":::a} is given by the straight-line sections. From the figure,
estimate the following:
1. P{X:,,::: 14}
2. P{9 < X :":::14}
3. P{12:,,::: Y :":::14}
4. A value of t so that P{X > t} = P{Y > t}

5. P{X:,,::: 13.5} - P{Y :":::13.5}
6. P{Z:,,::: 14}
7. P{Z < 14}
8. P{Z = 14}
9. P{Z:,,::: 16} - P{Y :":::16}.

20

Figure 3.5. Cdf of X, Y, and Z.

Exercise 3.11. Refer to the data of Exercise 3.1, and graph F the
cumulative (relative) frequency function. That is, plot the points
(a, F) where F = (1{100)(number of times X :":::a). Thus,

F=O lia<O
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F = No. of times X = 0
100

F = No. of times X = 0 or 1
100

F=l

ifO:::;;a<l

if 1 :::;;a < 2

if 2 :::;;a.
Exercise 3.5. For the experiment of Exercise 3.2, it would be

too laborious to compute F for all abscissas. Instead, plot the
points (a, F) for a = 0, 0.1, 0.2, 0.3, 004, 0.5, 0.6, 0.7, 0.8, 0.9,
0.95, and 1.00. Then draw the polygon connecting these points.
Compare this polygon with the cdf Fby overlapping both the poly-
gon and F on one graph.

An essential difference between the discrete and continuous cases
is illustrated in Figures 3.2, 3.3, and 304. In the discrete case,
the cdf rises in jumps and is flat elsewhere. A jump of 0.25 at 2
represents the fact that P{X = 2} = 0.25. On the other hand, for
the continuous case, the cdf has no jumps but rises smoothly. Be-
cause the cdf has no jumps for a continuous random variable, it
follows that, if X is a continuous random variable as in the dial
problem and a is any specified number,

PiX = a} = O.

In particular, P{X = 0.1} = O. This fact does not imply that it
is impossible for X to be equal to 0.1. No matter what the out-
come of the experiment, it will have to be some number such that
the probability of obtaining that particular number is zero. A
probability of zero may mean that the corresponding value of X is
possible but, if the experiment is repeated many times, the relative
frequency of occurrence of that particular value becomes very
small. Hence X may equal 0.346000 ... on the first spin of the
dial, but it may never again equal 0.346000 ., '.

In connection with this property of random variables, it may be
pointed out that Mr. Sharp was sued by an irate customer for a car.
This customer, Mr. Cox, has 20 witnesses who all agree that
X was equal to 0.1 on his spin. Mr. Sharp claims that PiX = 0.1}
is zero, hence X = 0.1 is impossible and that the witnesses were
not reading the dial accurately enough when they claimed that X
had been equal to 0.1. The judge ruled against Mr. Sharp on the
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following grounds. First of all, a probability of zero does not im-
ply impossibility. However, the judge granted that such a small
probability was stronger evidence than that of 20 honest witnesses
with ordinary eyesight. Therefore, the judge granted that X had
not in fact been equal to 0.1. On the other hand, when Mr. Sharp
enticed customers by offering a car, he either had fraud in mind,
for which he should be prosecuted, or he meant to offer the car to
anyone who obtained an X reasonably close to 0.1. Assuming the
latter, and since reasonably close had not been defined by Mr.
Sharp, the judge felt that he could define X to be reasonably close
to 0.1 if 20 honest witnesses could not distinguish between the
actual value of X and 0.1. The judge ordered Mr. Sharp to deliver
the car to Mr. Cox.

1.0

Figure 3.6. Cdf F* for X* where X* is the outcome of the spin of
an ideal dial rounded off to the nearest hundreth.

Note: F*(O) = 0.005, F*(O.Ol) = 0.015, F*(0.02) = 0.025, ... F*(0.98)=
0.985, F\0.99) = 0.995, F*(1.00) = 1.00.

If you were to look at some measuring device such as a ruler,
you would see that there is noway of measuring a distance exact-
ly. However, you could approximate a distance with a certain
amount of precision depending on how the ruler is marked and on
your eyesight. Suppose that an observer is capable of measuring
X in the dial problem to the nearest hundredth. That is to say, if
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X were equal to 0.3763 ... , the witness would estimate X by 0.38.
As far as this witness is concerned he is observing a discrete ran-
dom variable X. whose possible values are 0.00, 0.01, 0.02, "',
0.99, 1.00, where the values 0.00,0.01, 0.02, ... , 0.98, 0.99, 1.00
have probabilities 0.005, 0.01, 0.01, "', 0.01, 0.01, 0.005, for an
ideal dial. The cdf of this discrete random variable appears in Figure
3.6. It is clear that for many practical purposes the continuous
distribution of X may be approximated by the discrete distribution
of X•. In general, if X is any continuous random variable, its dis-
tribution can be approximated by a discrete distribution by a round-
ing-off process. That is, X is replaced by X., which is obtained
from X by rounding after a certain decimal position. The more
decimal points that are kept before rounding off, the closer will X.
tend to be X and the finer will be the approximation of the cdf of
X. to the cdf of X. This remark has a good deal of theoretical im-
portance. There arise many theoretical situations where discrete
random variables are easier to treat than continuous ones. The
possibility of approximating a continuous random variable arbi-
trarily well by a discrete one is often applied.

1.0
F

p)X:5 a!
0.5

0
0 0.5

a
Figure 3.7. Cdf F for Y where X is the outcome of the spin of an

ideal dial, Y = X if X::2:0.5 and Y = 0 otherwise.

It should be pointed out that not all random variables are con-
tinuous or discrete. For example, one may have combinations of
these. An example is the following. Suppose Mr. Sharp has decid-
ed to offer X dollars if someone spins an X between 0.5 and 1.0.
If, however, X is less than 0.5, the spinner receives nothing. The
amount the spinner receives is a random variable Y which has the
cdf given in Figure 3.7. Note that the cdf has a jump at Y= 0 but
its rise is "smooth" elsewhere. Although most random variables
that we come across are either discrete or continuous, there are
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exceptions. For these exceptions, it is nice to have a tool such as
the cdf which is applicable to all kinds of distributions.

4. PR08ABlLITY DENSITY FUNCTION-DISCRETE CASE

In the preceding section we have discussed the cdf as a tool for
summarizing the probability distribution concisely. We have also
pointed out that the cdf is similar to the cumulative frequency
polygon. When we have a discrete random variable such as the
number of heads in the toss of two ideal coins, it is just as concise
and often more convenient and descriptive to summarize the
probability distribution by the values of P{X = O}, P{X = 1},
and P{X = 2}. That the cdf can be recovered from these values
is clear because

P{X ::::;O} = P{X = O} = 1/4

P{X::::; 1} = P{X = O}+ P{X = 1} = 1/4 + 1/2 = 3/4
P{X ::::;2} = P{X = O}+ P{X = 1} + P{X = 2}

= 1/4 + 1/2 + 1/4 = 1.
In general, if X is a discrete random variable, the possiblevalues

it may have can be labeled in some order XII X2, X3, •••• The dis-
crete probability density function which is sometimes called the
discrete density is defined by

P{X = Xl}'

As the cdf is related to the cumulative polygon, the discrete
density is related to the histogram. In Figures 3.8 and 3.9 we
give the discrete densities for the ideal coins and the ideal dice
together with the cdf's. Note that the value of the discrete density
is nothing but the jump in the cdf.
The discrete density has the important property that the sum

of its values is one. From a probability point of view, this means
merely that the probability of observing some one of the possible
values is one. This fact can be written as:

EP{X = Xl} = P{X = Xl} + P{X = X,} + ... = 1.
I

An example where there are infinitely many possible values of
a discrete random variable is the following. An experiment con-
sists of tossing an ideal coin until the appearance of heads. Let X
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Figure 3.8. Discrete density and cdf for X equal to the number of
heads in the toss of two ideal coins.
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Figure 3.9 Discrete density and cdf for X equal to the sum of the
two faces showing in the toss of two ideal dice.

be the number of times the coin has been tossed. It is clear that
the probability of heads on the first toss is 1/2. That means
P{X = I} = 1/2. We will have X= 2 if we get tails followed by
heads. We believe that most readers will grant that this should
occur in 1/4 of the experiments. That is to say, P{X = 2} = 1/4.
Similarly, we shall have X = 3 if we obtain tails twice followedby
heads once, which should occur in 1/8 of our experiments. Hence,
P{X = I} = 1/2, P{X = 2}= 1/4, P{X = 3}= 1/8, P{X = 4}= 1/16,
etc. It is clear that X may be any positive integer although it is
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unlikely that it will be a very large integer. Note also that
1/2 + 1/4 + 1/8 + 1/16+ ... represents the sum of a simple
geometric progression and is, in fact, equal to one. If the reader
is unacquainted with geometric progressions, he should consider
the so-called partial sums, 1/2, 1/2 + 1/4, 1/2 + 1/4 + 1/8, 1/2 +
1/4 + 1/8 + 1/16, etc. These partial sums are equal to 1 - 1/2,
1 - 1/4, 1 - 1/8, 1 - 1/16, etc., respectively, and clearly approach
one.
Exercise 3.6. A very unbalanced die might have the following

distribution for Y, the face falling uppermost when it is cast:
P{Y = I} = 1/2, P{Y = 2} = P{Y = 3} = P{Y = 4} =

P{Y = 5} = P{Y = 6} = 1/10.
For such a die, compute
(a) P{Y ~ 3}
(b) P{l < Y ~ 4}.

Exercise 3.7. Tell how you could use a table of random digits to
take observations on a random variable with the same distribution
as that of Y in Exercise 3.6.
Exercise 3.8. Compare the observed relative frequencies of X =

0, 1, and 2, (proportion of trials resulting in 0, in 1, and in 2) for
the coin problem (see Exercise 3.1) with the probabilities for the
ideal coin. Do these relative frequencies seem surprisingly close,
surprisingly far, or neither?
Exercise 3.9. Three ideal coins are tossed. List all eight possi-

bilities, (HHH, HHT, etc.) and use this list to compute the discrete
density and cdf of X = no. of heads. Represent the density and
cdf by graphs.
Exercise 3.10. What is the probability that, in the toss of two

ideal coins, the two coins will match?
Exercise 3.11. For the toss of a pair of ideal dice, compute
(a) PIX is odd}
(b) PIX is a multiple of 3}.

5. PROBABILITY DENSITY FUNCTION -CONTINUOUS CASE

The continuous random variable is characterized by the ex-
istence of a probability density function with the following pro-
perties. This probability density junction is represented by a curve
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on a graph. The curve never lies below the horizontal axis. The
total area between the curve and the horizontal axis is one. Area
between the curve and the horizontal axis represents probability.
Thus P{ -0.5 < X ~ 1.0} is the area between the curve and the
horizontal axis as the abscissa ranges over the interval from -0.5
to 1.0. This probability is also represented by the rise in the cdf
as the abscissa ranges from -0.5 to 1.0. See Figure 3.10. Note
that the height of the density at a point indicates how rapidly the
cdf is rising at that point.
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<;"0.6
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Figure 3.10. The probability density function and cdf of the random
variable X = the change in height (measured in feet) in MacDonald's

rain barrel over a one-year period.

If two possible values of the random variable X are specified,
then X is more likely to be near the value for which the density is
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larger than near the other. Thus, for Figure 3.10, the probability
that X will fall within 0.1 of 1.5 is approximately (0.2)(0.105) =
(0.021), whereas the probability that X will be within 0.1 of - 1.0
is much larger.
In the ideal dial problem, X is just as likely to fall in one interval

between 0 and 1 as in any other such interval of the same size.
There the density is equal to one for abscissas between 0 and 1,
and is equal to zero for other abscissas; see Figure 3.11. This can
be further checked by noting that the probability of falling within
any interval lying between zero and one is the length of the in-
terval. The above density yields the same result. For example,
P{O.4 :::;;X :::;;0.6} = 0.2, while the area between the density and
the horizontal axis as the abscissa goes from 0.4 to 0.6 is also 0.2.

Density
1.0

Shaded area = 0.8
p{ 0.4::; x::; 0.61 0.6

=0.2 0.4

0.2

Cumulative

p{ 0.4 ::;X::; 0.6)
=0.2

Figure 3.11. Density and cdf for X equal to the outcome
of the spin of an ideal dial.

Suppose now that the 100 observations from Exercise 3.2 were
used to construct a histogram. Suppose that the intervals used
were (0.00, 0.20), (0.20, 0.40), (0.40, 0.60), ••. , (0.80, 1.00). Since
P{O.OO :::;;X :::;;0.20} = 0.2, one would except about 20% of the ob-
servations in this interval. The same applies to all five intervals.
Exercise 3.12. Construct the histogram described above.
The histogram resembles the probability density function. A

closer resemblance can be obtained by taking more observations
and smaller intervals. Generally (but by no means always), the
densities encountered in practice are rather smooth, not jumping
abruptly. Then, for reasonably large samples and fine enough in-
tervals, the histogram gives a very good idea of the density of the
corresponding random variable.
Exercise 3.13. Use the density of Figure 3.10 to estimate

P{ -1.0 < X :::;;- 0.5}, P{ - 0.5 < X :::;;o}, P{O < X :::;;0.5}, and
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P{0.5 < X ::;:1.0}. Use the cdf to obtain these quantities and
compare them with the estimates.
Exercise 3.14. Figure 3.12 shows five probability densities label-

ed A, B, C, D, and E. Each of them gives rise to a cdf. Answer

o o
B

o
c

o 1 2 3
D

o 1 2 3
E

Figure 3.12. Probability densities.

the following questions about their associated cdf's. (Rough
sketches may help, but are not a required part of the exercise.)

(a) Which is rising most rapidly at a = 1.5?
(b) Which is rising least rapidly at a = 1.5?
(c) Which is not polygonal in form?
Exercise 3.15. Suppose that the bearings in our dial develop

friction so that the pointer is twice as likely to stop in any interval
between 0.5 and 1.0 as in any interval of the same length between
o ond 0.5. Draw the density and cdf.

t6. POPULATION AND RANDOM SAMPLES

North Phiggins is an unusual community in that, when an in-
habitant is asked a question, he will always answer truthfully.
This characteristic has led to the enrichment of a local statistician
who has convinced a marketing research company that, in all other
respects, this community is typical of the country.

Recently a clothing manufacturer requested the marketing re-
search company for information about waist measurements of mar-
ried women. The company promptly asked the statistician to carry
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out a local survey. He was asked to take a mndom sample of 100
waist measurements from the population of waist measurements
of the 643married women in North Phiggins and to deliver a his-
togram of the 100waist measurements together with the mean and
standard deviation.
Although a sample of 100 waist measurements can give much

more information about waists than a sample of two measurements,
it does not give too much more information about the principles of
sampling. For simplicity then, we shall discuss three methods of
obtaining a sample of two waist measurements. For each of these
methods, we label the married women of North Phiggins by num-
bers from 1 to 643.
Method 1. Roll a well-balanced die with 643sides numbered from

one to 643. Take the waist measurement of the woman whose
number appears face down. Repeat this experiment, obtaining
a second measurement.
Method 2. This method is the same as the above except, if the

second number is the same as the first, ignore it and repeat the
roll until a different number appears.
Method 3. Obtain the first measurement as in the other methods.

Let the second measurement be that of the woman labeled N + 1,
where N is the first number rolled. (If N = 643, let the second
measurement be that of the woman labeled 1.)
Method 1 is called mndom sampling with replacement. Method

2 is called random sampling without 1'eplacement. We shall not
name Method 3. The above terminology is derived from the fact
that Method 1 is equivalent to numbering 643 tickets mixed in
a box, picking one out, 1'eplacing it, picking a ticket out again, and
taking the measurements corresponding to the two numbers,
Method 2 is equivalent to the same procedure except that the first
ticket is not replaced.
When sampling with replacement we have the following proper-

ties satisfied.
1. Each woman is equally likely to be sampled.
2. The first choice does not influence the second.

When sampling without replacement we still have:
1. Each woman is equally likely to be sampled.
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However, Property 2 is replaced by:
2a. Each distinct pair of women has an equal chance of being

sampled.
Sampling with replacement has one disadvantage and one advan-

tage over the other method. First, if the population is small, re-
placement tends to give less information since there is a chance that
the same woman will be picked twice. Despite this disadvantage,
the replacement method is often used because the replacement
method is easier to deal with mathematically.

When the population size is large compared with the sample size,
these two methods tend to have almost the same properties. Thus,
for large populations, where sampling has been carried out with-
out replacement, mathematicians will frequently make the approxi-
mation of computing as though there had been replacement.

Interestingly enough, Method 3 also has Property 1. But where
Method 2 barely failed to have Property 2 for the sake of more in-
formation, Method 3 can fail to have Property 2 with disastrous
consequences. Suppose that women were labeled in alphabetical
order. Then Method 3 is liable to get women who are related, and
we may obtain both measurements large or both measurements
small. The data will tend to be less informative than under the
alternative methods and, what is worse, it will not be known to
what extent the first choice influenced the second measurement.

From the above example we see that taking a random sample
of two observations with replacement is equivalent to repeating
an experiment two times where the outcome is a random variable
with a probability distribution determined by the population. This
statement is also approximately true for a sample without replace-
ment from a ., very large" population. If we repeated an ex-
periment, it would be suggestive to call the results a Ii sample"
from a population. Thus, the number on the face showing in the
roll of a well-balanced die can be treated as an observation obtain-
ed by random sampling from the population consisting of the six
numbers one through six. It can also be treated as an observation
obtained by random sampling from the population consisting of
600 numbers, 1/6 of which are one, 1/6 of which are two, etc.

It is convenient to speak of this experiment as sampling from
an infinitely large population where 1/6 of the members are one,
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1/6 are two, etc. This usage is particularly convenient if we have
an experiment with an outcome which has a continuous probability
distribution. Then we speak of this experiment as sampling from
an infinitely large population where the proportion of elements be-
tween a and b is equal to P{a ~ X ~ b}.
Because of the relation of the population and the associated

probability distribution, we shall use these terms interchangeably.
When we talk about observations from a population, we may mean
(a) random variables with a specified probability distribution or (b)
actual observations taken from a population by random sampling
with replacement.

Exercise 3.16. Take two random samples of 15 observations each
from the population of numbers 1 to 27. The first sample should be
without replacement and the second should be with replacement.
To avoid using a jar or a 27-sided die which is nonexistent, use a
table of random numbers. Indicate how you used the table of ran-
dom numbers.

Exercise 3.17. In Section 2, Chapter 1, assume (}lis the state of na-
ture. Select an observation by using the table of random digits with
the appropriate table of response frequencies. Repeat ten times.

Exercise 3.18. Follow the directions of Exercise 3.17 in connec-
tion with your example in Exercise 1.3.

EXe1'cise3.19. Follow the directions of Exercise 3.17 in connec-
tion with the example of Exercise 1.5.

Exercise 3.20. There are several ways to use a table of random
digits to select an observation from the population of numbers 1
to 27. Some are more efficient than others in that they tend to
use fewer random digits. Present two methods and indicate which
seems more efficient.

7. THE NORMAL POPULATION

A special family of populations or distributions of great im-
portance in statistics is the family of normal distributions. For
theoretical reasons which will be discussed later, these distributions
arise frequently.
One example where a normal distribution occurs in a rather ar-

tificial wayl is the scores on the graduate record examination, which
1 Exercise 3.24 involves an explanation of why the normal distribution occurs

artificially in the graduate record examination.
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is given to a large number of students who have graduated from
college. Hence. if a student is selected at random from the popu-
lation of students who have taken the examination, the correspond-
ing grade X has the density and cdf given in Figure 3.13. For each
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Figure 3.13. Probability density function and edf for the grade X on
the graduate record examination. The random variable X has the

normal distribution with p. = 500 and II = 100.

number p and each positive number 0-, there is a normal density
with the characteristic bell-shaped appearance. The number p re-
presents the location of the "center" of the distribution. Here
the density reaches its highest value. Between p and p + 0- there
is 34% of the area. That is, P{p ~ X ~ p + o-} = 0.34. If p is
increased, the density distribution merely shifts to the right. If 0-

is increased, then the curve flattens out; see Figure 3.14. The value
of 0- is a measure of the variability of observations from the popu-
lation (for large samples the sample standard deviation will tend
to be close to 0-). When 0- is two, observations will tend to be scat-
tered twice as far from the center as they would be if 0- were one.
For the graduate record examination, p = 500 and 0- = 100. Hence
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TABLE 3.1.

CUMULATIVE DISTRIBUTION FOR THE NORMALLY DISTRIBUTED RANDOM VARIABLE*

a P{Xsa} a P{Xsa}

1'-3.50" 0.0002 1'+0.00" 0.5000
1'-3.411 0.0003 1'+0.111 0.5398
1'-3.311 0.0005 1'+0.211 0.5793
1'-3.211 0.0007 1'+0.311 0.6179
1'-3.111 0.0010 1'+0.411 0.6554
1'-3.00" 0.0013 1'+0.50" 0.6915
1'-2.911 0.0019 1'+0.611 0.7258
1'-2.811 0.0026 1'+0.70" 0.7580
1'-2.70" 0.0035 1'+0.811 0.7881
1'-2.611 0.0047 1'+0.90' 0.8159
1'-2.511 0.0062 1'+1.011 0.8413
1'-2.411 0.0082 1'+1.10' 0.8643
1'-2.311 0.0107 I' + 1.211 0.8849
1'- 2.20' 0.0139 1'+1.30" 0.9032
1'-2.10" 0.0179 1'1 1.40' 0.9192
1'-2.00' 0.0227 1'+1.50' 0.9332
1'-1.90' 0.0287 1'+1.60" 0.9452
1'-1.80" 0.0359 1'+1.70" 0.9554
1'-1.70' 0.0446 1'+1.80' 0.9641
1'-1.60' 0.0548 1'+1.90' 0.9713
1'-1.511 0.0668 1'+2.011 0.9773
1'-1.40' 0.0808 1'+2.10' 0.9821
1'-1.30' 0.0968 1'+2.20" 0.9861
1'-1.211 0.1151 1'+2.30' 0.9893
1'-1.111 0.1357 I'+2.411 0.9918
1'-1.011 0.1587 1'+2.50' 0.9938
1'-0.911 0.1841 1'+2.611 0.9953
1'-0.80' 0.2119 1'+2.711 0.9965
1'-0.70' 0.2420 wf-2.811 0.9974
1'-0.611 0.2742 1'+2.90' 0.9981
1'-0.50' 0.3085 1'+3.00' 0'9987
1'-0.4" 0.3446 1'+3.1" 0.9990
1'-0.3" 0.3811 1'+3.2" 0.9993
1'-0.2" 0.4207 1'+3.30' 0.9995
1'-0.1" 0.4602 1'+3.4" 0.9997

1'+3.5" 0.9998
*For a more detailed table see Appendix D1•
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34<1'0 of the population have grades between 500and 600, 84% have
grades less than or equal to 600..1 Table 3.1 (a tabular representa-
tion of the cdf) enables one to compute the probability of a normal
random variable falling in some i~terval.
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Figure 3.14. The densities and edf's of three normal distributions.

Normal with J.L = 0, cr = 1 --------
Normal with J.L = 0, cr = 2 -'-'-'-'-'-'-'
Normal with J.L = 1, cr = 1 ---------

Example 3.3. Suppose it is desired to compute the proportion of
the population achieving grades on the graduate record examina-
tion:

:,

1. Less than or equal to 800;'
2. Over 800.
3. Between 300 and 600.
4. At least 200 away from 500.

1. P{X ~ 800}
The number 800 is 300 units away from fl = 500. Since

u = 100, 800 is 3u from /1. Thus

P{X ~ 800} = P{X ~ fl + 3u} = 0.9987 .
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2. P{X > 800}
Those grades which are not less than or equal to 800 are over

800. Thus,
P{X > 800} = 1 - P{X S;; 800; = 0.0013.

3. P{300 S;; X S;; 600}
Here 600 = 500 + 100 = fl + (J" and 300 = 500 - 200 =

fl- 2(J". Thus, P{X S;; 600} = P{X S;; fl + (J"}= 0.8413, and P{X<
300} = 0.0227. Then,

P{300 S;; X S;; 600} = P{X S;; 600} - P{X < 300}
= 0.8413 - 0.0227 = 0.8186.

4. The proportion of students whose grades are within 200 of
500 is P{300 S;; X S;; 700} = P{fl - 2(J"S;; X S;; fl + 2(J"j-= 0.9546.
Hence the desired proportion is 0.0454.
In these computations, when we want P{X S;; a}, we have to ex-

press a as a certain number of (J"'S from fl. The distance from a to
fl is a - fl and, thus, as illustrated in the above examples, a is
(a - fl)/(J" sigmas from fl.

Because the normal distribution plays an important role in statis-
tics, it is sometimes desirable to have a table of numbers which cor-
responds to observations from a normal population. Such tables
exist, and one is given in Appendix C.. On the other hand, it is
possible to construct such a table from that of random digits. A
method that could also be used is as follows. Suppose that it is
desired to obtain a normal random variable with mean 500 and
standard deviation 100. We could select a student at random from
the population of students taking the graduate record examination
and take his score for X.
The following alternative takes less time. Take a random num-

ber from the rectangular population between zero and one. This
can be obtained approximately as before by putting four random
digits after a decimal point. Find the location of this number in
the second column of the cdf table (Table 3.1) for the normal dis-
tribution. The corresponding a is the desired normal random varia-
ble. For example, the first four digits in our table of random num-
bers in Appendix C1 give us 0.0347. This corresponds to an a close
to fl - (1.817)(J" which is approximately 500 - (1.817)100 = 318.3.
How do we know that this procedure yields a random variable with
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P{X :::;A} = 0.50
P{X :::;B} = 0.05
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the appropriate cumulative distribution function? Let X be the
random number between 0 and 1. Let Y be the corresponding
number yielded by this procedure. We have Y :::;/l - 2iT if and
only if X:::; 0.0227. Hence, P{Y:::; /l - 2iT} = P{X :::;0.0227}=
0.0227. From the argument used for this special value of a =
/l - 2iT, it is clear that the cdf of Y is exactly the desired normal
cdf.

Exercise 3.21. Suppose the heights of navy recruits are normally
distributed with /l = 69 and iT = 3. Let X be the height of a recruit
selected at random.

Evaluate:
P{69 :::;X}
P{69:::; X:::; 72}
P{66 :::;X :::;78}
P{42 :::;X}

Exercise 3.22. Apply the table of random normal deviates (Ap-
pendix C2) to obtain two samples of ten observations each from
a normal population with /l = 30 and iT = 10. Compute the sample
mean for each of the samples.

Exercise 3.23. In East Phiggins, the men love to engage in co-
operative sports. The most favored game is Tug of War. There
are two versions. In one of these, 50 men pull against 50 others.
In the second, their cooperative spirit is manifested by all 100men
pulling against a given load. It takes 200,000lb of pulling force to
move the load. The pulling force of the 100 men is the sum of the
individual pulling forces. A consequence of an elegant theorem in
probability theory is that the sum of many observations on a ran-
dom variable X is approximately normally distributed. We shall
assume then that, for 100men selected at random in East Phiggins,
the total pulling load is normally distributed with /l = 160,000lb
and iT = 25,000lb. What proportion of the time do 100 men, select-
ed at random, succeed in pulling the load?

Exercise 3.24. Mr. Evans, Principal of East Phiggins High
School, is a great believer in normal distributions. Having once
read a book on statistics, he has the fixed notion that examination
grades should be normally distributed with p. = 50, and iT = 10.
Although the students of East Phiggins High School have adjusted
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to receiving low grades consistently, Mr. Evans' teachers are un-
happy because even in large classes the histograms usually look
quite different from the bell-shaped normal density. In fact, they
resemble a two-humped camel more than a bell. Under the com-
pulsion of being consistent with "statistics", the teachers have
taken to modifying the grades. When they are finished, the dis-
tribution of grades in each class is approximately normal, with
f1 = 50 and (J" = 10. This modification is not carelessly done. If
Bill Jones had a lower grade than Tom Smith before the modifica-
tion, he will have a lower grade after the modification. How would
you accomplish this end? Illustrate by indicating the final grades
you would give to the students who ranked 300th, 500th, and 650th
(from the bottom) in a class of 1000students. Incidentally, this is
exactly what is done with graduate record examinations, and ex-
plains why the distribution there is normal, although artificially
so. The technical mathematical advantages of working with a nor-
mal distribution are such that it is often worth while to use the
above techniques for large populations so long as one is under no
illusions about where the normality comes from.
Exercise 3.25. In North Phiggins, the banks estimate the num-

ber of kopeks in a pile by weighing them. The estimate, based on
two kopeks to the ounce, is twice the weight, in ounces, of the pile
of kopeks rounded off to the nearest integer. Thus the pile will
be estimated as having 100 kopeks if its weight is between 49.75
and 50.25 oz. Compute the probability that 100kopeks will weigh
between 49.75 and 50.25 oz if the weight of 100kopeks is consider-
ed to be normally distributed with f1 = 50 and (J" = 0.125. If the
weight does not fall between 49.75 and 50.25 oz, the size of the
pile of 100kopeks will be incorrectly estimated.

8. SETS AND FUNCTION

Thus far in this chapter, and also to a certain extent in the pre-
ceding chapters, we have been handicapped in our language. A
reluctance to introduce the notions of set and function has involved
us in a great deal of circumlocution. In this section, we shall dis-
cuss these notions and, using them in the next section, we shall
summarize concisely many of the remarks made up to now about
probability.
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The notions of set and function appear in many places, and, like
prose, are used by many persons who are unaware of what they
are using. In many cases, to point out that these notions are being
used does not add any great amount of understanding to a problem.
On the other hand, in many cases, including probability theory,
the use of these notions not only makes for conciseness but often
seems necessary for the understanding of all but the most trivial
questions.

Any collection, such as the possible outcomes of an experiment
in which two coins are tossed, is called a set. The items in the col-
lection are called the elements of the set. If one set consists ex-
clusively of some of the elements of a second set, then the first set
is called a subset of the second. For example, {(H, H), (H, Tn is
a subset of {(H, H), (H, T), (T, H)}. Notice that a set is frequent-
ly represented by indicating its elements within a pair of braces.
It is customary to distinguish between an element and the set con-
sisting of that element. Thus (H, H) is an element of the rather
trivial set {(H, H)}. Two sets are said to be nonoverlapping if they
have no elements in common. For example, the sets {(H, H), (H, Tn
and {(T, Hn are nonoverlapping.

Some examples where we previously dealt with sets are the fol-
lowing. In the introduction we were concerned with:

1. The set {O" °2, 03} of possible states of nature;
2. the set {a" a" a3} of available actions;
3. the set {s" S2' S3' s" S5} of strategies; and
4. the set {z" z." Z3' z,} of possible observations (outcomes of the

experiment).
Frequently we have occasion to deal with:
5. The set of all numbers; and
6. the set of positive integers {I, 2, 3, ... }.
The abscissa and ordinate representing a point on graph paper

are two numbers and the set of points on graph paper can be re-
presented by:

7. The set of pairs of numbers where the first number is the ab-
scissa and the second is the ordinate. This set is sometimes called
the plane.

Certain notations and abbreviations for sets are often convenient
to use. We use {x: x has a specified property} to represent the set
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of all elements which have the specified property. For example,
{x: x is a horse} is the set of horses and {x: 3 ~ x ~ 4} is the set
of numbers between 3 and 4 including 3 and 4. The symbol x is
used here to denote a typical element of the set but has no special
meaning. If we replaced x by y in the above, we would still have
the same set. Thus {y: y is a horse} is still the set of horses. The
set {x: 3 ~ x ~ 4} has a simple geometric representation. Con-
sider the horizontal axis on graph paper. Each point on this line
corresponds to a number. The set {x: 3 ~ x ~ 4} corresponds to
a segment or interval of the axis (including the end points). Hence,
we shall frequently call sets of real numbers, and sets of pairs of
real numbers, point sets. A set {x: a ~ x ~ b} will be called an
interval.
In the experiment of tossing a nickel and a penny, we were in-

terested in the number of heads obtained in the two tosses. For
each of the possible outcomes of the experiment, there is a num-
ber which represents the corresponding number of heads obtained.
A correspondence or rule which associates with each element of one
set an element of a second set is called afunction. More explicitly,
it is sometimes called a function on the first set to the second set.
The element of the second set which corresponds to the given ele-
ment of the first set is called the cor1.esponding value of the func-
tion. In some cases a function can be represented by a table. For
example, Table 3.2 represents the above" number of heads" func-
tion.

TABLE 3.2.

/1 = NUMBER OF HEADS IN THE Toss OF A NICKEL AND A PENNY

Possible outcomes of experiment
Corresponding values of /1

(H, H) (H, T) (T, H) (T, T)
2 1 1 0

It is clear that this particular function f, represents the random
variable we have discussed previously. This functionfl is a func-
tion on the set of possible outcomes to the set of numbers.
Some other functions we have come across before are repre-

sented in the Tables 3.3 and 3.4.
Some functions cannot be represented quite so easily. For ex-

ample, consider the function f, which makes correspond to each
number between 0 and 1 the square of the given number.
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TABLE 3.3.

f. = STRATEGY 81 (SEE TABLE 1.3)

Possible outcomes of the experiment
Corresponding values of 81 (actions assigned by 81)

TABLE 3.4.

Zl z~ Z3 Z4

al al a. a3

f3 = AVERAGE Loss ASSOCIATED WITH STRATEGY 81 (SEE TABLE 1.4)

Possible states of nature 61 6. 63
Corresponding values of f3 (average losses for strategy 81) 1 3.5 4

There are infinitely many elements in the set of all numbers
between 0 and 1, and a tabular representation of f4 would never
terminate. One may partially represent this function by an in-
complete table which would give the squares of the numbers 0.00,
0.01, 0.02, 0.03, etc. One may approximately represent this func-
tion by a graph where a typical point has coordinates (x, y), where
x is a number between zero and one and y = x' (see Figure 3.15).

y 0.5

o
o

x
Figure 3.15. Graphical representation of the function

f, where f,(x) = x'.

Again this is only a partial representation because of limitations in
(1) drawing points and (2) the number of points one can actually
draw. In fact, this partial representation is quite serviceable be-
causef, is such a continuous and well-behaved function.

A brief representation which is very convenient consists of des-
cribing f4 by

for 0::;; x::;; 1.
Here f,(x) denotes the value of f, corresponding to an arbitrary
number x between 0 and 1. In general, if.f is a function on A to
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B, I(x) represents the value of I, Le., the element of B, corres-
ponding to an element x of A. Thus Il«H, H» = 2 I.(z.) = all 1M3)
= 4, and 1,(0.5) = 0.25.
Some other functions are described as follows:

I5(x) = 2 + 3x
I6(x) = 4

I,(x) = x
I8(x) = mother of x

for an arbitrary number x
for an arbitrary number x
for an arbitrary number x
for an arbitrary person x.

Sometimes the description of a function is not quite so simple.
For example, consider 19 represented by

I9(x) = X

I9(x) = 2 - X

I9(x) = 0

for 0::;; x::;; 1
for 1 ::;;x::;:: 2
for all numbers not between 0 and 2.

See Figure 3.16 for a graphical representation of 19'
X f9(X)

-1.0 0
-0.5 0
o 0
0.5 0.5
1.0 1.0
1.5 0.5
2.0 0
2.5 0

~_(x)_

012
x

Figure 3.16. Graphical and tabular representation of 19 defined by:

f9(X) = x for 0";; x < 1
= 2 - x for 1";; x < 2
= 0 otherwise (i.e., for all other numbers).

*Exercise 3.26. Consider the experiment of tossing three coins
(a penny, a nickel, and a dime). List the set of all possible outcomes
where heads or tails is recorded for each coin. Tabulate X, the
number of heads corresponding to each outcome. If the coins were
well balanced, what would be the probability of exactly two heads?
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*Exercise 3.27. Plot and describe in geometric terms the follow-
ing sets. Are they overlapping?

(a) {(x, y): 2x + y = 4}
(b) {(x, y): x - 2y = I}
(c) {(x, y): y = x2

}

Exercise 3.28. Plot and describe in geometric terms the follow-
ing sets. Are they overlapping?

(a) {(x, y): x2 + y' = 4}
(b) {(x, y): x2 + y' ::;;4}
(c) {(x, y): (x - 2)2 + (y - 1)2 < I}
Exercise 3.29. There are many possible normal distributions,

one for each pair of values (p, IT), where - 00 < p < 00 and IT> o.
Each such possible pair (p, IT) can be represented as a point having
two coordinates. Describe the set of all such points which can
thus represent normal distributions.

Exercise 3.30. Present a graphical and tabular representation of
the function flO described by flO(x) = 1/(1 + x2).

Exercise 3.31. Present a graphical and tabular representation
of the function fll described by

fll(x) = 0
x

fll(x) = 1+ x2

for x::;; 0

for x> o.

9. REVIEW OF PROBABILITY

We shall be interested in certain subsets of the set % of all pos-
sible outcomes of an experiment. For example, in the experiment
of tossing a nickel and a penny, we may be interested in E1 =
{(H, T), (T, H)}, which is the set of all those outcomes for which
heads appeared exactly once.

Let E be a subset of %. As the experiment is repeated many
times under similar circumstances, the proportion of times in which
the outcome of the experiment is an element of E tends to be close to
some number. This number will be called the probability of E and
written P{E}.

This correspondence or function denoted by P is called the pro-
bability distribution for the experiment. Note that P is a function
on the set of subsets E of % to the real numbers between 0 and 1.
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A possible probability distribution corresponding to some rather
bent .coins is represented in Table 3.5.
A random variable is represented by a rule or function g which

assigns a number to each possible outcome of the experiment. Label
the outcome of the experiment Z. The value of the random varia-
ble is X = g(Z). Thus, if the above experiment, when carried out,

TABLE 3.5.

PROBABILITY DISTRIBUTION FOR AN EXPERIMENT OF TOSSING
Two RATHER BENT COINS

E

f(H, H)}
f(H, T)}
{(T, H)}
{(T, T)}
f(H, H), (H, T)}
f(H, H), (T, H)}
{(H, H), (T, T)}
{(H, T), (T, H)}
f(H, T), (T, T)}
{(T, m, (T, T)}
{(H, H), (H, T), (T,Hl}
{(H, H), (H, T), (T, T)}
{(H, H), (T, H), (T, T)}
{(H, T), (T, H), (T, T)}
{(H, H), (H, T), (T, H), (T, T)}

TABLE 3.6.

PfE}

6/24
10(24
3(24
5(24
16(24
9(24
11(24
13/24
15/24
8/24
19/24
21/24
14/24
18(24
24(24

PROBABILITY DISTRIBUTION OF X=NUMBER OF HEADS IN THE
EXPERIMENT OF TOSSING Two RATHER BENT COINS

(REFER TO TABLE 3.5)

E

{X=O}={(T, T)}
{X=I}=((H, T), (T, H)}
{X=2}=f(H, H)}
{X=O or I} ={(T, T), (H, T), (T, H)}
fX=O or 2} =f(T, T), (H, H)}
{X=1 or 2} ={(H, T), (T, H), (H, H)J
{X=O or 1 or 2}={(T, T), (T, H), (H, T), (H, H)}

PIE}

5/24
13/24
6(24
18/24
11(24
19/24
24/24

Note: The notation {X satisfies a certain property} is an abbreviation for the
set of outcomes such that the corresponding value of X satisfies this property,
i.e., fZ: Z is an outcome such that X satisfies the property}. Note that the only
outcome for which X=O is (T, T) and, hence, {X=O}={(T, T)J.
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led to Z = (H, T), the random variable fl (number of heads as in
Section 8) would have the value X = fl(Z) = 1. When there is no
fear of real confusion, it is common to call X the random variable,
although, strictly speaking, X is the value of the random variable
and not the random variable. For example, we talk of the pro-
bability distribution of the random variable X; this is defined as the
rule which assigns probabilities to sets of outcomes which can be
expressed in terms of restrictions on X. The probability distribu-
tion of the random variable is generally an abbreviated version of
the probability distribution for the experiment; see Table 3.6.

The probability distribution of a random variable X is summariz-
ed concisely by the cumulative distribution function F which is
defined by

F(a) = P{X :::;;a} = P{Z: Z is an outcome such that X = g(Z) :::;;a}

for all numbers a. In the discrete case, where the possible values
of X are separated from one another, the probability distribution
is adequately summarized by the discrete probability density func-
tion f defined by

f(x) = P{X = x}.

The continuous case is characterized by the existence of a pro-
bability density function f which has the properties:

1. f(x) ~ 0 for all numbers x; and
2. the area between the horizontal axis and the curve whose

typical points are (x,f(x» is one.
This density corresponds to the random variable X if
3. P{a:::;; X :::;;b} = area between the horizontal axis and graph

corresponding to abscissas between a and b.

In the discrete case, the values of the discrete density corre-
spond to the jumps of the cdf. In the continuous case, the cdf has
no jumps. There the value of the cdf for a given abscissa a is the
area to the left of a between the graph of the density and the hori-
zontal axis.

The" rectangular" density function for the ideal dial problem is
f12 defined by

f12(x) = 1
fl' (x) = 0

for 0:::;; x:::;; 1
for all other numbers.
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for all numbers x.I

The probability density function f for the normal distribution is
defined by

f(x) = _1_ e-<X-I'-)'/2a'
v27l"<T'

When fl = 0 and <T = 1, the above expression becomes

__l_e-x'/'
V27l" •

Exercise 3.32. Show thatfg of Section 8 is a probability density
function. (This is the density for the random variable which is
the sum of the outcomes of two spins of a well-balanced dial.)
Exercise 3.33. Tabulate the discrete density for X = number

of heads obtained in the toss of four well-balanced coins.
Exercise 3.34. What is the probability of throwing a 7, 8, 9, or

10 with a pair of dice?
Exercise 3.35. A poker hand contains four spades and one heart.

The heart is discarded and another card is drawn. What is the
probability that the new card will be a spade?
Exercise 3.36. A poker hand contains a 3, 4, 5, 6, and 10. The

10 is discarded. What is the probability of drawing a 2 or 7 if the
10 is discarded?
Exercise 3.37. A poker hand contains a 5,6,7,9, and Jack. What

is the probability of drawing an 8 if the Jack is discarded?
Exercise 3.38. A poker hand contains two aces, two 7's and a 9.

What is the probability of drawing an ace or a 7 if the 9 is discarded?
Exercise 3.39. Let Y = X', where X is the outcome of the ideal

dial experiment. Find the cdf of Y.
Exercise 3.40. Let X equal the number of people in a sample of

100 voters from East Phiggins who favor prohibition. If the pro-
portion of all voters who favor prohibition is p, X is approximately
normally distributed with fl = lOOpand <T = lOvp(l - p). We call
the data misleading if X> 50 when p < 1/2 or if X < 50 when
p > 1/2. Find the probability that the data will be misleading if
p = 0.40.
Exercise 3.41. Given that X has cdf F defined by
1 The number e = 2.71828 ... occurs in mathematics so often that it is honor-

ed with the special symbol e. Another example of such a number is 1t = 3.14159 ....
For later convenience in typography, we shall often represent eX by exp (x).
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F(a) = 0
= (a + 1)2/4
=1

for a::;; - 1
for - 1 < a ::;;1
for a> 1 .

Compute

(a) P{ - 0.5 < X ::;;0.5} (b) P{X > 0.5} (c) prO < X ::;;0.6}.

Exercise 3.42. A point is selected at random from the interior
of a circle of radius one. By this we mean that the probability that
the point lies in a given subset of the circle is proportional to the
area of the subset. Graph the cdf of R where R is the distance of
the point to the center of the circle.

oExercise 3.43. What is the probability that two socks, selected
at random (without replacement) from a drawer containing six red
and three brown socks, will match?
Exercise 3.44. What is the probability that three socks, select-

ed at random (without replacement) from a drawer containing six
red and three brown socks, will contain a matching pair?

oExercise 3.45. Socks are taken (without replacement) from
a drawer containing six red and three brown socks until a red sock
is drawn. Describe the discrete density of X equal to the number
of socks drawn.

oExercise 3.46. A poker hand contains three spades, one heart,
and one club. What is the probability of drawing two spades if the
heart and club are discarded?

oExercise 3.47. Find the density of Y in Exercise 3.39.
oExercise 3.48. Find the probability density function for X in

exercise 3.41.
oExercise 3.49. A point (X, Y) is selected at random on the cir-

cumference of the circle x' + y2 = 1. (The probability of falling
on an arc segment is proportional to the length of the segment.)
Find the cdf and density of X.

°A convenient method of doing this problem involves the idea of combinations
which are not covered in this text. Problems involving the use of mathematical
ideas not covered in this text nor in high school mathematics courses will be marked
with aO.
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Each book presents probability theory from a rather elementary point of view.
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CHAPTER 4

Utility and Descriptive Statistics

1. INTRODUCTION

As was previously pointed out, there are two types of uncertain-
ty. One is due to randomness and the second is due to ignorance
of which law of randomness (state of nature) applies. Suppose that
the state of nature is known and randomness is the only type of
uncertainty left. What principles does one use to make decisions
then? Certainly this problem is simpler than the one where the
state of nature is unknown.
Under certain assumptions we shall see that the prospect facing

a person has a numerical value called utility, and that he should
make those decisions for which his prospects would have as large
a utility as possible. Generally speaking, this is easier said than
done, but, in many applications, certain simple properties of utility
make it feasible for one to make intelligent decisions.

2. UTILITY

Put yourself in the following hypothetical positions where the
state of nature is known and see whether you would accept the
following bets (each bet is offered only once).
1. You receive $2 if a (well-balanced) coin falls heads and you

pay $1 if it falls tails.
2. Your entire fortune has a cash value of $10,000,000. You re-

ceive $20,000,000extra if the coin falls heads and you lose your
fortune otherwise.
3. You intend to spend all your cash on beer to drink this evening.

You have $3 which will buy a good deal of beer. You receive $3
extra if the coin falls heads and you lose your $3 otherwise.
4. You are desperate to see the" big game." You have $3 but

a ticket costs $5. You receive $3 extra if the coin falls heads and
you lose your $3 otherwise.

79
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The authors' reactions to these situations would be: (1) bet; (2)
do not bet; (3) do not bet; and (4) bet. The situations (1) and (2)
were similar in that the favorable 2-to-1 odds were offered when
"even" odds (1-to-1)seemedappropriate. Still, our responses were
different. What is the essence of the difference between the two
situations? Vaguely speaking, the authors feel that in situation 1,
where the probability of winning is one half, the amount to be
gained is greater than that to be lost. In situation 2, it is also true
that there is more money to be gained than lost, but the winning
of $20,000,000would increase our happiness very little while the
loss of our $10,000,000would lead to considerable misery. Thus in
situation 2, there is more" happiness" to be lost than to be gained.
In situations 3 and 4, we have the similarity that the bets were

at even odds when even odds seemed called for, but the responses
were different. Once again, the essence of the difference seems to
be in the value of the money gained or lost. The pleasure gained
by the beer drinker out of drinking $6 worth of beer instead of
$3worth is small compared to the displeasure of being deprived
of the original $3 worth of beer. On the other hand, if one is
desperate to go to the big game, $3 is almost as useless as nothing,
whereas $6makes all the difference in the world.
In other words, the usual use of " fair" odds in money bets is

not always appropriate because the value of money to the owner
does not always seem to be proportional to the amount of money.
(Thus $30,000,000is not three times as valuable as $10,000,000to
the millionaire but $6 is many times more valuable than $3 to the
big-game enthusiast.)
It would be convenient to have somemeasure of value which did

not have the above shortcoming. Furthermore, it would be desira-
ble that this measure apply to valuable considerations, other than
money, such as leisure, reputation, etc.
Under assumptions to be listed, we shall see that there is a mea.

sure of value, namely, utility, which can be used to measure situa-
tions or prospects' in such a way that the choice of actions is some-
times relatively easy to make. In fact, it has been proved that if
an individual has tastes which satisfy the four assumptions dis-
cussed in Section 2.1, then there is a utility function u on the set of
, The term" prospect" will be explained in more detail shortly. Until then,

one may regard it in a nontechnical sense.
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prospects to the set of numhers. That is, to each prospect P, there
corresponds a numher u(P) which is called the utility of the prospect
P. This function has the following properties, called the utility
function properties:

UTILITY FUNCTION PROPERTY 1. u(P,) > u(P2) if and only if the
individual prefers PI to P2•

UTILITY FUNCTION PROPERTY 2. If P is the prospect where, with
probability p, the individual faces P, and with probability 1- p he
faces P2, then

The first property states that utility increases when the prospect
improves and the second states that utility, unlike rrwney, can
atways be computed with according to ordinary odds. We shall dis-
cuss this type of computation in more detail in Section 3. We shall
see that, if an individual feels that u(P,) = 1, u(P2) = 2, and u(Pa) =
1.6, he would prefer Fa to the prospect of obtaining P, if a well-
balanced coin falls heads and P2 if it falls tails.
It must be pointed out that different people have different tastes

and will have different utility functions (provided, of course, that
their tastes satisfy the assumptions and that, therefore, they do
have utility functions).

t2.1. The Assumptions Behind Utility

Let H denote the entire future history of a given individual, in-
cluding all his joys and sorrows. Suppose that he were given a
choice between two possible histories H, and H2• In practice, many
people may find it difficult to select between two different histor-
ies, not that they are often given such a clear-cut choice. However,
let us assume that they can always decide which they prefer or
whether they like each history equally well.
Now let us suppose that the individual were told that his future

history would be selected according to some random rule (proba.
bility distribution) which he is given. This situation may be called
a prospect P. An example of a prospect is the following. A young
man rushes across the street at the sight of a pretty young lady.
With probability 0.8 he crosses the street, meets her, marries her
and, to summarize briefly, lives happily for 60 additional years.
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With probability 0.2, a car hits him and he dies.'
We discuss four assumptions:

ASSUMPTION 1. With sufficient calculation an individual faced
with two prospects PI and p. u,'ill be able to decide Whethe1'he pre-
fers prospect P, to p., whether he likes each equally well, or whether
he prefers P2 to Pl'
ASSUMPTION 2. If PI is regarded at least as well as p•• and p.

at least as well as P3, then P, is regarded at least as well as P3•
Suppose that the individual is given a choice between p. on one

hand and gambling between PI and P3 on the other hand. A pros-
pect P which consists of applying some random device to select
one of several prospects is called a mixture of these prospects.
Thus the prospect of facing P, with probability 0.8 and P3 with
probability 0.2 is a mixture of P, and P3• (See the example of the
young man crossing the street for a rather simple version of a
mixture of two prospects.) Ordinarily if PI is preferred to Ps, it
would seem reasonable to assume that among mixtures of P, and P3

the ones which give higher probabilities for PI are to be preferred.
If the probability of facing P, should be close to one, is the mixture
almost as good as PI? If the probability of facing PI is close to zero,
is the mixture almost as poor as P3? Assumption 3 will essentially
answer" yes."

ASSUMPTION 3. If PI is preferrea to p. which is preferred to P3,
then there is a mixture of P, and P3 which is preferred to p., and
there is a mixture of PI and P3 over which p. is preferred.
ASSUMPTION 4. rSuppose the individual prefers PI to p. and P3 is

anothe'r prospect. Then we assume that the individual will prefer a
mixture of P, and P3 to the same mixture of p. and P3•
The reader would do well to think about whether he believes

that these assumptions apply to his method of choosing between
prospects. For example, the third assumption stated is quite im-
portant and well worth considering. Suppose P, involves living a
very happy life, p. involves living a miserable life, and P3 involves
the possibility of hell. Could it be that you would prefer the
miserable life to any risk of P3? That is, would you prefer certain

I In this case the prospect P involves two possible histories. Any history H
can itself be considered as a somewhat trivial prospect where the outcome is H
itself with probability 1.
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misery to gambling between almost certain happiness and the
slightest possibility of hell? Our assumption is that, if the probabili-
ty ofP3 is small enough, you wouldgamble between PIand PJ instead
of facing P,. The issues raised here are essentially the following.
Are there prospects so terrible or so wonderful that the slightest
possibility of facing them is also incomparably worse or better than
ordinary prospects? This issue can be raised even if one refuses to
accept the existence of hell. For example, the immediate loss of
life is evidently not considered incomparably bad since people are
always crossing dangerous intersections and risking immediate
loss of life rather than face the inconvenience of waiting several
hours for traffic to slow down.
Even if the existence of such terrible or wonderful prospects is

accepted, our assumption may still apply to a limited extent. It
may apply for comparisons among all prospects in which one ends
up in heaven. Then, so long as one's decisions do not prejudice the
possibility of ending up in heaven, one may apply the ensuing
results.
The existence of a utility described in Section 2 has been derived

on the basis of these four assumptions. I
From now on, we shall assume the existence of utility functions

for individuals. Granting their existence, how does one compute
them? What role does utility play in the problem of decision mak-
ing? To answer these questions, let us illustrate some charac-
teristics of utility with a specificexample. For our specificexample
we consider the young man who is faced with a mixture of Po, the
prospect of being killed in his attempt to cross the street, and PI'
the prospect of successfully crossing the street to meet the young
lady, etc. Suppose that the value of the utility function is known
for these two prospects. In fact, suppose u(Po) = -3, and u(P1)=5.
(Evidently the prospect of married life attracts the young man.)
What would be the utility of the mixed prospect if the probability
of successfully crossing the street is 1/2? It would be (1/2)(-3)+
(1/2)(5)= 1. If we were to plot the utilities of Po, PH and the
above mixture on the horizontal axis of graph paper, we would
have two points and one (P2) halfway between them; see Figure 4.1.
I A careful and detailed derivation appears in reference [2]. For reference

purposes (for mathematically sophisticated readers), a skeleton outline of a
derivation is presented in Appendix F2•
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Suppose now that the probability of successfully crossing the street
is 4/5. The utility would be (1/5)(-3) + (4/5)(5) = 17/5 = 3.4. This
point Fa is clearly between the points represented by Po and p) and,

Po P P2
I + I I' I + I

-4 -3 -2 -1 0 1 2
Figure 4.1. Utilities of various prospects.

P2 = mixture of p) and Po each with probability 1/2.
P3 = mixture of p) and Po with probabilities 4/5 and 1/5 respectively.

in fact, is 4/5 of the way from the first to the second. It is clear
that, as the probability of successfully crossing the street increases
from zero to one, the value of the utility of the mixed prospect
moves from u(Po) to u(P,). Each point between those represented
by Po and p) corresponds to a mixture of Po and P" with an appro-
priate probability of facing Pl'
Now consider the prospect P of not crossing the street and living

a rather ordinary life. If PI is preferred to P which, in turn, is
preferred to Po, u(P) should be between u(Po) and u(Pl). But then
the value of the utility for P is the same as for a certain mixture
of Po and Pl' This means that there is a mixture of Po and P, such
that the young man is indifferent between this mixture and P. If
the young man were to sit and meditate sufficiently long, he would
probably be able to determine that probability of successfully cross-
ing the street for which he would just as soon not cross as cross.
(If his calculations take too long, he may be too late to face Pl' For
the sake of simplicity, we shall assume that he is a very rapid
calculator.) Suppose that after sufficient introspection he decides
that, if the probability of successfully crossing the street is only
0.3, he would just as soon not cross as cross. Then the utility of
P is the same as that for the mixed prospect with probability (0.3)
of successfully crossing the street. This is clearly (0.7) (- 3)+
(0.3)(5) = - 0.6. In this way he can evaluate u(P) for any pros-
pect •. between" Po and Pl'
Suppose that after some thought he had decided that death

would be preferable to drab, ordinary life filled only with painful
thoughts of what might have been. In other words, both p) and
Po are preferred to P. Then how can he evaluate u(P)? In this
case, Po will have the same utility as some mixture of P and g.
Suppose that he is indifferent between Po and a mixture of P and
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PI' where PI has probability 0.4. Then,
u(Po) = 0.6u(P) + O.4u(PI)

-3 = 0.6u(P) + (0.4)(5)
u(P) = -8.33.

A similar technique would apply if he had decided that, after all,
he preferred drab bachelorhood (P) to a married life even with this
gorgeous creature (PI)'
We have shown how to evaluate u(P) for an arbitrary P once we

know the value of u for any two special prospects Po and PI (which
have different utilities). How dowe find u(Po) and u(PI)? The fact
is that we can arbitrarily fix these two utilities at any two values,
say 0 and 1, or -3 and 5, keeping in mind that the larger value
goes to the preferred prospect. Instead of indicating why, we
point out that a similar process applies to the measurement of
temperatures. The effect of temperature is indicated by the length
of a column of mercury in a small tube. The hotter the temperature
the higher the column. A ruler is put down next to the tube and
a scale is marked on the tube. Two points on this scale are arbi-
trarily taken. The point corresponding to the temperature at which
water freezes is arbitrarily labeled 0 and the point corresponding
to the temperature at which water boils is labeled 100. A temper-
ature corresponding to a position halfway between would be called
50. This measurement of temperature is in the so-calledCentigrade
scale. Another scale more commonly used in English speaking
countries is the Fahrenheit scale. Here 0 and 100 were selected
for two different points. Zeroand 100in the Centigrade scale corre-
spond to 32 and 212 in the Fahrenheit scale. It clearly does not
matter which scale is used as long as it is identified.
This discussion of the assumptions behind utility has been in-

tended to illuminate their meaning. If they hold exactly for an
individual, then it is a logical consequence that he has a utility
function, and expected utility is for him the sole guide to choice.
To demonstrate that these assumptions actually do hold, even for
one person, would be a task of unmanageable size. A more direct
and limited approach has led to experiments which show that many
people (not all) act, in certain carefully controlled experimental
setups, as if their choices satisfied the utility assumptions. Any
such experiment concerned with bets involving, say, books or re-
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cords or cash, can at most demonstrate the validity of the theory
for that person in that narrow context. Lacking solid evidence for
the practical validity of the assumptions, must we conclude that
the use of utility is a precarious business? Not at all. Even if a
person may be unable to decide which of two crippling diseases he
" prefers" (see Assumption 1), even if sometimes his preferences
are circular (see Assumption 2), etc., it may still be true that in
many practical choice situations he will, and should, act much as
though he had a utility function. This is especially likely to be
true where the alternatives involved are not too dissimilar in cha-
racter. Examples which illustrate the usefulness of utility in limited
choice situations occur in the remainder of the book.
Exercise 4.1. If u(Po) = 7 and u(PI) = 19, find u(P) in the follow-

ing three cases where you are indifferent between:
(a) P, and the mixture of Poand PI where you face PI with proba-

bility 1/6;
(b) Po, and the mixture of P and Plo where you face PI with

probability 1/5;
(c) Plo and the mixture of P and Po, where you face Po with

probability 2/3.
Exercise 4.2. Suppose u(Po) = - 3 and u(PI) = 5, and we find it

convenient to transform to a new utility function v such that
v(Po) = 0 and v(PI) = 1. Derive the relationship between u(P) and
v(P) for values of v(P) between 0 and 1.
Exercise 4.3. Express the relationship between the utility func-

tions wand u if w(Po) = 4, U'(p,) = 8, u(Po) = - 3, and u(PI) = 5.

2.2 Application of Utility

What use do we make of utility in decision making when the
laws of randomness (state of nature) are known? If a and a* are
two available actions and these actions lead to prospects P and P*
which have utilities u(P) and u(P*), then of these two actions we
should take the one for u'hich the c01Tesponding utility is larger. I
Frequently, relevant prospects are mixtures of prospects with
I Utility was shown to be derived from preferences among prospects. Hence

there seems to be circularity here in deriving preferences from utilities. This
is true, but utility offers computational convenience. The fact is that utility
property 2 enables us to compute many relevant utilities once a few others are
known. Thus simple computations may replace difficult and time-consuming
introspection.
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known utilities. Then the utility of the mixture may be readily
computed. For example, as we shall see later, if P is a mixture
which presents you with PIwith probability Ph P2 with probability
P2' Pa with probability Pa, and P, otherwise (with probability p,),
then

u(P) = PI u(PI) + P2 u(P2) + Pa u(Pa) + P, u(P,).

This simple computation may save hours of introspection.
An important consideration is the following. No matter how

carefully you think or introspect, it is really rather difficult to at-
tach utilities to histories (histories of the whole life including all
the joys and sorrows). In practice, one usually confines one's atten-
tion to a small aspect of the history which is relevant to the par-
ticular problem and, with some rough ideas of how utility is af-
fected by certain changes, one is put in a position of using the
properties of utility to make very reasonable decisions. We illus-
trate with the following example about which more will be said
later.
Example 4.1. Mr. Campbell is rather well established in a posi-

tion he likes and which he does not expect to leave. This position
yields him a steady incomeof $90 per month. Having industrious-
ly saved money, he has about $8000 in liquid assets. The presence
of this money is not essential to his continuing in his present way
of life. On the other hand, the more he has the more he feels free
to spend for some of the finer things of life. Furthermore, if he
lost all his money, he would, considering his conservative nature,
feel compelled to forego certain expenditures till he had saved a
bit, even though these expenditures could lead to savings in the
long run. (For example, he would keep his old car even though it
is falling apart and uneconomical to run.) Suppose that for the
sake of convenience he were to set his present utility at 1 and his
utility in the event that he had no money at 0, his utility function
could be expressed approximately as a function of money (assum-
ing all other things remain more or less equal). Suppose that after
a bit of introspection, Mr. Campbell expresses his utility function
by the following graph, Figure 4.2. Should Mr. Campbell accept
a bet in which he makes $2000with probability 1/2 and loses $1000
with probability 1/2? His present utility is 1. If he takes the bet,
he has a probability 0.5 of having $7000and a utility of 0.86, and
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a probability 0.5 of having $10,000 and a utility of 1.18. Hence
the utility associated with the bet is (0.86+ 1.18){2= 1.02, and he
should take it.
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Figure 4.2. Mr. CampbelI's utility for money.

Notice how Mr. Campbell's problem has been settled by refer-
rence to the utility of money only, assuming that "all other
things remain more or less equaL" Indeed only his utility for
money over the range $0 to $15,000 has come under considera-
tion. We may be fairly confident that a reasonable treatment of
his problem has resulted, even though he may lack a full utility
function embracing all possible prospects.
Exercise 4.4. At 2-to-l odds on the flip of an ideal coin, how big

a bet should Mr. Campbell be willing to take? That is, at what size
of bet should he decide that he is indifferent between betting and
not betting? (Try various sizes of bets and use Figure 4.2.)
*Exercise 4.5. Suppose Mr. Campbell has only $1000and there-

fore utility 0.03. Should he invest $1000 in an enterprise which
will take his money with probability 5{6and yield him $5000 (this
includes his investment) with probability 1/6?
*Exercise 4.6. Note that in Figure 4.2 a chord is drawn connect-

ing the points on the graph corresponding to the two possible out-
comes of the bet in Example 4.1. The ordinates (heights) represent
the utilities and, since either outcome is equally likely, the result-
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ing utility is halfway between the two ordinates. This utility is
the ordinate corresponding to the point of the chord halfway be-
tween the two other points. Present a similar geometric interpreta-
tion of your result for Exercise 4.5.
Exercise 4.7. Mr. Campbell has $4000and utility 0.25. He is of-

fered a bet which yields him $6000 with probability p and $2000
with probability 1 - p. For what value of p is he indifferent about
accepting the bet?
Exercise 4.8. The prospect P is a mixture of PI' P2, and Pa with

probabilities 0.2, 0.5, and 0.3. If PlJP2, and Pa have utilities 4, 8,
and 16, find u(P).
Exercise 4.9. Draw reasonable utility functions for Albert,

Bertram, and Charles for money gifts up to $10. Albert and
Bertram have no cash. Albert would spend all he received on beer to
drink tonight. Bertram would love to go to the big game (entrance
fee $5). Charles owns a bank and could always use more money.

3. PROBABILITY AND EXPECTATION

It is now expedient to review and expand on some aspects of the
theory of probability. Probability refers to the long-run frequency
in many repetitions of an experiment under similar circumstances.
To be more precise, suppose % is the set of all possible outcomes
of the experiment. To each set A of possible outcomes is associated
a probability P{A}. This is the proportion of times, in many trials,
that the outcome of the experiment will be an element of A. The
rule or function P which associates to each set A of possible out-
comes, the number P{A}, is called the probability distribution for
the experiment. The probability distribution satisfies certain basic
properties in terms of which the theory of probability is developed.
To discuss these properties, we first present some set theory nota-
tion, some of which has been discussed previously. To illustrate
this notation, we shall use as a special example the case of tossing
a nickel and a penny, where the set % of possible outcomes is
given by

% = {(H, H), (H, T), (T, H), (T, T)}.

1. Set A is a subset of B if B contains all the elements of A. For
example, the set {(H, H)} is a subset of {(H, H), (T, H)}. Also
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{(H, H), (T, T)} is a subset of {(H, H), (T, T)} although in a rather
trivial way.

Exercise 4.10. For the sake of concreteness and to develop prac-
tice in set language, it is good exercise to label the various sets.
Thus;
Al = {(H, H)} corresponds to both heads, that is, P{A1} is the

probability that both coins fall heads;
A2 = {(H, H), (H, T)} corresponds to "the nickel falls heads ";
Ag = {(H, T), (T, H)} corresponds to " exactly one of the coins

falls heads," or equivalently, "the two coins do not match."
List two of the other sets and label them.
2. The complement A of a set A is the set of all elements (under

consideration) which are not in A. Thus,
~

{(H, H)} = {(H, T), (T, H), (T, T)}.

That is, the complement of " both heads" is "not both heads."~
Similarly, {(H, T), (T, H)} = {(H, H), (T, T)}. In talking about
the complement of a set, wemust have decided previously on what
elements are under consideration. Otherwise the complement of
{(H, H)} would have included, among other items, all the horses
in the world and some mighty poor novels. In probability applica-
tions, the basic set under consideration is, of course, %, the set
of all possible outcomes. It is easy to see that the complement of- ~
A is A. For example, {(H, H)} = {(H, T), (T, H), (T, T)} and
{(ii, T), (T, H), (T,T)} = {(H, H)}. Generally speaking, if a set
A can be given a name in English, the complement can be given
the negative of that name. Thus, "the two coins match" and
"the two coins do not match" are the complementary sets
{(H, H), (T, T)} and {(H, T), (T, H)} respectively. 1
3. One may ask what is the complement of %. Since there are

no elements under consideration which are not in %, this set has
no complement. It is convenient to eliminate this unusual charac-
teristic by introducing a special set, the null set designated by ep
which may be called the set consisting of no elements. Then we
1 Because of the nature of the English translations of sets, we often use the

two terms "the outcome is an element of A" and "A occurs" as equivalent.
Thus P{A} is often called the probability that A occurs and P{A) is called the
probabilitity that A does not occur.
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% = ep, ep = %.
4. The union of several sets All A ••••• , A" is the set A of ele-

ments which are in at least one of the sets All ~, •••. The union
is denoted by

For example,
{(H, H)} U {(H, H), (H, T)} U {(H, T), (T, H)}
= {(H, H), (H, T), (T, H)}.

In general, if Al, A2, ••• , A" are called by their names, the union
can be and often is written in terms of or. Thus we shall usually
write the union as

A = Al or A2 or .•. or A".
(The everyday English usage of the word " or " is subject to some
ambiguity. When we say Al or A2, we shall mean Al or A2 or both.)

Exercise 4.11. Take the union of two or more sets and interpret
this union in terms of " or."
Exercise 4.12. Let % be the set of points in the plane. That is,

% = {(x, y): x and yare numbers}. Represent the sets Al =
{(x, y): ~ + y2::;; 4}, A2 = {(x, y): (x - 1)2+ (y - 2)2::;; 1}, and
their union geometrically.
Exercise 4.13. Consider various subsets of a deck of bridge cards.

Let A be the spade suit, B the face cards (Jacks, Queens, and
Kings), C the Jack of clubs, and D the red cards. (These sets con-
tain 13, 12, 1, and 26 cards respectively.) Howmany elements are
there in the following sets?

1. AUB 4. (CUD)
2. iJ 5. (DUB)----------3. AU CUB 6. (AUBU CUD).

Exercise 4.14. If 30% of the population like ice cream but not
beer, 20% like beer but not ice cream, and 10% like both, what
percent like ice cream or beer (or both)?
Rerrw,rk: The following simple diagram (Figure 4.3), called a

Venn diagram, is a convenient device to help avoid confusion.
For this problem, A represents the set of people who like ice

cream, B the set who like beer. The overlapping portion represents
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the set of people who both like beer and like ice cream, the entire
shaded portion represents A or B. The rectangle represents the
entire population.

Figure 4.3. Venn diagram.

Exercise 4.15. (a) If 50% of the population like baseball, 60% like
movies, and 30% like both, what percent like movies or baseball (or
both)? (b) What percent like neither baseball nor movies?
5. Two sets are called nonoverlapping if they have no elements

in common. Thus {(H, H)} and {(H, T), (T, H)} are nonoverlapp-
ing. Also {(x, y) : x2 + if ~ 4} and {(x, y): (X-4)2 + (y_4)2 ~ I}
are nonoverlapping.l The two sets {(x, y): x2 + y2 < I} and
{(x, y): x' + y2 = I} are quite close to one another but they are
nonoverlapping too. Three or more sets will be called nonoverlapp-
ing if every pair is nonoverlapping, that is, if no two of these sets
have any element in common.
The basic properties of probability distributions are the follow-

ing:
PROBABILITY PROPERTY 1. 0 ~ P{A} ~ 1 for every set A of

possible outcomes.
PROBABILITY PROPERTY 2. P{.z} = 1, P{.p} = O.
PROBABILITY PROPERTY 3. P{A} + PiA} = 1.
PROIJABILITY PROPERTY 4. P{AI or A2 or ... } = PiAl} + P{A2}

+ ... if AI' A" ... are nonoverlapping sets.
PROBABILITY PROPERTY 5. P{A} ~ P{B} if A is a subset of B.
These properties are easily explained and form the core from

which the theory of probability is developed. The first property
merely states that a probability is always hetween zero and one.
The second property merely states that the outcome of every trial

1 These sets are circles (with their interiors). The first has radius 2 and center
at the origin. The second has radius 1 and center at (4,4).
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of the experiment is in %. We sometimes call % the certain set
since it is certain that the outcome of the experiment is in %.
Similarly, we sometimes call the null set cp the impossible set since
it is impossible that the outcome of the experiment be in cp. Pro-
perty 2 states that the certain set has probability one and the im-
possible set has probability zero.
Property 3 states that the probabilities of complementary sets

add up to one. In English, the probability of something taking
place plus the probability of that something not taking place is
one. This is clear when we observe that, if something occurred in
say 40% of the trials, it failed to occur in the remaining 60% of
the trials.
Property 4 is related to Property 3. It states that, if the out-

come is in At 30% of the time, and in Az 25% of the time, and At
and A2 are nonoverlapping, then in 55% of the experiments the
outcome will be in At or in Az• If At and Az overlap, this may not
be true, for then it might be that 10% of the time the outcome is
in both At and Az• Then the times that it is in At or Az could be
broken into three (nonoverlapping) parts:
In At but not in A2 20% of the time;
in A2 but not in At 15% of the time; and
in At and A2 10% of the time; and thus
in At or Az 45% of the time.
Property 5 states merely that, if B occurs whenever A does,

then P{B} is greater than or equal to P{A}. Thus the probability
of two heads is less than or equal to the probability of at least one
head. That is, P{(H, H)} ~ P{(H, H), (H, T), (T, H)}.
These properties are not only basic to the study of probability

but we have used them implicitly many times. This is merely the
first time they have been presented in a formal fashion but not the
first time they have been considered or used.
Thus, we have always assumed that probabilities are between 0

and 1 (Property 1) and that, if the probability of heads on the toss
of a coin is 0.4, then the probability of tails is 0.6 (Property 3).
Properties 4 and 2 were assumed implicitly when we stated that
the sum of the values of a discrete density was one. For there we
really used the fact that {Z: X = Xt}, {Z: X = X2}, ••• are all
nonoverlapping sets, and that they exhaust all possibilities, i.e.,
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their union is %. Hence, the sum of their probabilities is the pro-
bability of % (Property 4) which is equal to 1 (Property 2). Pro-
perty 5 is used so often by the man on the street that it hardly
needs elaboration. For example, everyone knows that the proba-
bility of throwing a two, three, or twelve in craps exceeds the pro-
bability of throwing a three.
Finally, these properties are somewhat redundant in the sense

that they can be proved by assuming only a few of them. In Ap-
pendix Ea we present a proof of these properties, assuming only
that: (a) P{A} :;::::0; (b) P{%} = 1; and (c) Property 4.
Example 4.2. Mr. Sharp has taken up gambling as a business.

Recently he investigated an interesting game which yields the
customer a gain of $8 if a certain bent coin falls heads and a loss
of $2 otherwise. Let X = Mr. Sharp's gain in dollars. Then X has
-8 and 2 as possible values. After many observations, Mr. Sharp
has decided that the probability of heads with this coin is about
0.3. He is interested in whether it would pay for him to attempt
to entice customers to play this game. He estimates that, if custo-
mers play this game 1,000,000 times, he will lose $8 about 300,000
times and gain $2 about 700,000 times. Thus, in all, he will be
ahead about

300,000( -8) + 700,000(2) = -1,000,000.

He finds that he expects to lose about $1,000,000 which is an aver-
age gain of -$1 per game. If Mr. Sharp's customers had played
the game and the successive values of X were labeled

Xli X ••••• , X1,ooo,ooo,

then X, the average value of these "observations," is what we
have just estimated to be close to -$1. Mr. Sharp does not care
for this game. Instead, he develops a variation where, depending
on the roll of a four-sided die, Mr. Sharp will win either $2 with
probability 0.4, $1 with probabilty 0.3, $0 with probability 0.2, or
-$5 with probability 0.1. Here he estimates that, if he has custo-
mers playa million times, giving him Xu X ••••• , X1,ooo,ooo, he will
win $2 about 400,000 times, $1 about 300,000 times, $0 about
200,000 times, and -$5 about 100,000 times. That is, in all he will
win

Xl + X. + ... + X1,ooo,ooo



UTILITY AND DESCRIPTIVE STATISTICS

which is about equal (in dollars) to

(400,000)2 + (300,000)1 + (200,000)0 - (100,000)5 = 600,000

which gives an average value, X, which is about

(
400,000 )(2) + ( 300,000 )(1) + ( 200,000 )(0)
1,000,000 1,000,000 1,000,000

+ ( 100,000 )(-5) = ( 600,000) = 0.6
1,000,000 1,000,000

95

or an average of 60 cents per game.
This " long-1.un expected average of X " is called the expectation

of X and is denoted by E(X). Mr. Sharp is well advised to entice
customers to play this game. Even though the game never results
in an exact gain of 60 cents, and even though he cannot be sure
that in 100 games he will come out ahead, he can feel quite certain
that, if enough customers play, his average winnings will tend to
be close to 60 cents per game and, if enough customers play, he
may become wealthy.

The technique used to compute E(X) is subject to generalization
in an obvious way. That is, if X is a discrete random variable
which can take on the values XH x, ... with probabilities PH P••... ,
then

(4.1) E(X) = p]X]+ p,x, + ....
The reader should compare this equation with the above examples
to check that the same reasoning will yield this result.

*Exercise 4.16. Let X be the number of heads obtained in the
toss of four well-balanced coins (see Exercise 3.33). Compute E(X).
Suppose a gambler receives Y = X2 dollars after the toss. What is
E(Y)?

Exercise 4.17. In Example 1.1, suppose loss is measured in uti-
lity. If the state of nature is 0" compute the expected loss of
utility involved in applying strategy S].

Exercise 4.18. If you receive one cent for every dot that ap-
pears in throwing two, well-balanced dice, what is the expected
gain (in cents)?

Exercise 4.19. The probability that a man aged 60 will live an-
other year is 0.95. If the insurance company pays $1000 upon his
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death, what is the expected amount the insurance company will
payout for the man that year?
We have previously defined the expectation of a discrete random

variable only. The notion extends to continuous random variables,
and a discussion appears in Appendix E, after Consequence 6. For
example, if Mr. Sharp were to use an ideal dial and receive from
customers in gold dust the amount shown, e.g., 0.345 oz if the dial
showed 0.345 etc., then it seems clear that, in the long run, he
would average 1/2 oz per customer. Thus a reasonable definition of
expectation would yield E(X) = 1/2 for the outcome of the spin of
an ideal dial. The fact that we are not prepared to discuss the ex-
tension of the definition of expectation in more detail need not
trouble us. Whether a random variable is discrete or continuous
or otherwise, it obeys the following properties which we shall find
as useful as the general definition.
EXPECTATION PROPERTY 1. E(X + Y) = E(X) + E(Y).
EXPECTATION PROPERTY 2. E(cX) = cE(X).
EXPECTATION PROPERTY 3. E(1) = 1.
EXPECTATION PROPERTY 4a. E(X) > E(Y), if X > Y.
EXPECTATION PROPERTY 4b. E(X) ~ E(Y), if X ~ Y.
These four properties can be expressed as follows: Suppose Mr.

Sharp has two different bets with two different friends or custo-
mers. Both bets depend on the outcome of the same game. Sup-
pose that one friend pays him X dollars and the other pays him Y
dollars at the end of the game, where X and Yare random varia-
bles, of course. The first property states that, if he averages $ 4
a game from the first friend and $2 a game from the second, on
the whole he will average $6 a game.
The second property states that, if all bets are doubled, he will

average twice as much. The third property states that, if he
collects $1 no matter what happens, he will average $1 per game.
(This situation corresponds to the case where the house charges
people $1 per game to gamble but does not engage in the game
otherwise.) Finally, the fourth property states merely that, if he
always gets more money from one friend than from a second, he
will average more from the first friend than from the second.
Because of the relation between expectation and average (ex-

ectation is a long-run average), it is not surprising that these pro-
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perties correspond to similar properties of averages and the sum-
mation symbol [see Equations (2.1) through (2.3)].
Properties 1 and 2 can be easily combined and extended to yield
EXPECT ATION PROPERTY 1a.

E(aX + bY + cZ) = aE(X) + bE(Y) + cE(Z).

To illustrate, suppose Mr. Sharp bets on the outcome of the game
with three different customers simultaneously. These wagers yield
him X, Y, and Z. If he averages $1, $2, and $4 per game from
these customers and they decide to double, triple, and quadruple
their bets respectively, then he will average (in dollars)

2 x 1 + 3 x 2 + 4 x 4 = 24.
A game is called a "fair" game if the gambler's winnings X

are such that E(X) = O. Since Mr. Sharp has taken up gambling
as a business and not as a recreation, he does not intend to run a
" fair" game. On the other hand, if he can entice many more
customers by making the game almost fair, he may decide to do
so. His decision will be based on the principle that a larger volume
of business may compensate for a decreased earning per customer.
When does it pay for a customer to gamble? This is not an en-

tirely flippant question. In a sense, insurance companiesare gambl-
ing establishments and the decision to take out or not to take out
insurance corresponds roughly to the decisions not to gamble and
to gamble respectively. Notice the peculiar order here. When you
do not take out insurance, you gamble, and the insurance company
does not. We will say more about this later.
If a customer is to gamble a relatively small sum at each play

of the game and to do this many, many times, then he should
gamble only if the expectation of his money winnings (per game)
is positive, i.e., the game is " favorable." For then he is almost
certain to comeout winning money and his utility will be increased.
If the expectation of his winnings (per game) is negative, he should
stay away. If the game is a fair game, then after many plays his
average winning or loss per game will be small. However, this
small amount per play of the game may add up to a considerable
sum if the game is played 1,000,000times. In any case, if he were
to playa fair game many, many times, eventually it would be un-
favorable for him in the sense that the time wasted in playing
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would outweigh in value his winnings or losses. In fact, a gam-
bling house must be certain of having someminimal expected win-
nings in order to be sure of being able to pay for the salaries of the
gambling-device operators and other overhead costs.
Although the above discussion may satisfactorily treat the case

of the-gambler who plays his game many, many times, it does not
say much about the person who has only one opportunity to play.
For example, Mr. Campbell certainly will not be given hundreds
of opportunities to win $2000on investing $1000on the toss of a
coin. Even if he were given hundreds of opportunities to bet such
a large amount of money, a run of bad luck might bankrupt him
and stop the gambling before he had played often enough to take
advantage of the long-run aspects of expectation. Previously we
discussed how Mr. Campbell should decide about accepting a bet
(assuming it was offered only once). His procedure consisted of
comparing his utility when he does not bet u($8000) = 1 with
(1/2)u($7000) + (1/2)u($1O,000)= (1/2)(0.86)+ (1/2)(1.18)= 1.02. In
so doing he is applying the second utility function property which
states that, if P is a prospect which leads to facing PI with proba-
bility p and P,with probability 1 - p, then

u(P) = p u(PI) + (1 - p) u(P,).

In this case, P is a prospect which results in eventually facing a
random prospect P with corresponding random utility u(P). Here
the possible values of the random prospect are PI and P2 and the
corresponding values of the random utility u(PI) and u(P,). Then
p u(PI) + (1 - p) u(P,) is precisely E(u(P».
It is possible to prove in general that, if P is a prospect which

results in eventually facing a random prospect P (P is a mixed
prospect consisting of a mixture of the prospects which are the
possible values of P), then

u(P) = E(u(P».

From here on we shall call this property the secondutility function
property.
A major point of the preceding sections is the following. If a

gamble is " favorable" from the point of view of expectation of
money and you have the choice of repeating it many times, then
it is wise to do so. For eventually, your amount of money and,
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consequently, your utility are bound to increase (assuming that
utility increases if money increases). If you can gamble only once,
then the issue is not expectation of money but expectation of utili-
ty. If engaging in a gamble increases the expected utility, then it
should be engaged in. In general, the expectation of the utility
arising from a course of action is the one criterion for measuring
how good that course of action is.

Exercise 4.20. Mr. Campbell engages in a complicated game.
When the game is over he will have either $2000, $4000, $8000,
or $10,000, with probabilities 0.3, 0.2, 0.4, and 0.1. Compute his
utility. (Use Figure 4.4.)

t4. APPLICATION OF UTILITY TO FAIR BETS

Let us consider a few problems that may conceivably face Mr.
Campbell. Suppose that, before he decides to make his bet, the
man who offered it notices that the odds are a bit out of line com-
pared with the probabilities of winning and losing. He changes his
offer to the following. A well-balanced, three-sided die is rolled.
If side 1 turns up, Mr. Campbell collects $2000; otherwise he pays
$1000. Because Mr. Campbell has not done so well by delaying,
he now faces a less favorable gamble as an alternative to not gam-
bling. This new gamble is " fair" in the sense that the expecta-
tion of profit is given by

(1/3)($2000) + (2/3)( -$1000) = O.

In Figure 4.4, we again present Mr. Campbell's utility function for
money. The utility corresponding to the gamble is

u = (1/3)u($10,000) + (2/3)u($7000)

u = (1/3)(1.18) + (2/3)(0.86) = 0.97.

It clearly does not pay for Mr. Campbell to gamble. Geometrical-
ly, this fact is represented by considering the chord connecting the
two points on the utility function corresponding to $7000 and
$10,000. The point one-third of the way from the first point to
the second has for its abscissa the expected money resulting from
this gamble (2/3)(7000) + (1/3)(10,000) = 8000, and for its ordinate
the expected utility 0.97. Since the gamble is fair, we know that
the abscissa will be the same as the one before the gamble. Hence,
to obtain the utility graphically, we just take the point on the
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chord with the same abscissa as before. It should be emphasized
that this argument applies only to fair bets.
Why is the bet unfavorable to Mr. Campbell? There are several

alternative ways to express this. One way that is standard in
1.5
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Figure 4.4. Mr. Campbell's utility for money. The utility for two
fair bets at odds of two to one.

economic theory is that the marginal utility of money for Mr.
Campbell is decreasing between $7000and $10,000. This essentially
means that, as more money is obtained, each extra dollar does less
than the preceding to increase utility. In other words, the rate
at which the curve goes upward is decreasing. A second way to
express it is that the curve is concave between the relevant points.
This merely means that all chords connecting points with abscissas
between $7000and $10,000 lie below the curve. There is a section
of the curve which is convex (chords lie above the curve). If Mr.
Campbell had only $1000and would therefore be in a convex sec-
tion of the curve, it would pay for him to take the above-mentioned
fair bet.
If the utility function were linear, i.e., represented by a straight

line, then it would do no harm and no good to gamble on fair bets.
This has the following application. It iswell known that, if a power-
ful microscope is applied in the neighborhood of a point of a
" smooth" curve, the curve will look like a straight line. This is
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analogous to the fact that driving a car along the circumference of
a very large circle is like driving along a straight road. Hence, for
••fair" gambles which involve very small stakes, the graph of the
utility function behaves like a straight line and it makes very little
difference in utility whether or not you gamble.
Now Mr. Campbell is an enterprising man and knows a bookie

who will, for a small fee, offer him any fair bet. Mr. Campbell
wants to know whether there is any fair bet for which he can im-
prove his utility. To investigate this, all he has to do is to consider
all chords starting on one side of $8000 and ending on the other.
If any of these chords is above the utility graph at $8000, then it
pays for him to make the corresponding gamble.
Suppose that Mr. Campbell had $4000. What would be his best

bet and the correspondingutility? Thesecanbeobtained by drawing
all chords about the point with abscissa $4000. On the other
hand, we can save some fuss and bother in the constant re-evalua-
tion of the utility for the best bet as Mr. Campbell's fortune var-
ies. To do this we draw the convex set generated by the graph of
the utility function; this set automatically contains all the chords.
It pays for him to make the gamble corresponding to that chord
which gives the highest ordinate at $4000.
A convex set is a set such that if two points are in the set, all

points on the line segment connecting them are also in the set.
Hence, the interior of a circle is a convex set. The circumference
of a circle is not convex. The interior and circumference of a circle
together form a convex set. The points on a line form a convex
set. The points in a triangle also form a convex set. Some, but
not all quadrilaterals, are convex sets; see Figure 4.5.
The convex set generated by A is the smallest convex set

containing all the points of A ; see Figures 4.6 and 4.7.
If Mr. Campbell has $4000,his utility is 0.25. If he decides to

gamble appropriately, he can by the proper gamble raise his utility
to 0.50. In fact, it pays for him to take even a slightly unfavorable
bet to make the gamble. On the other hand, the bookie earns his
living by taking bets which are slightly unfavorable to his custo-
mer. It is interesting that two people can both raise their utilities
by engaging in a gamble in which one man's loss is another's gain
(in money). It is this fact which keeps insurance companies in
business.
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Circumference of circle (not convex)

Quadrilateral (not convex)

Triangle .(convex)

•Circle (convex)

•Heart-shaped set (not convex)

Quadrilateral (convex)

Egg-shaped set (convex)

Figure 4.5. Sets.

Convex set generated by A I

Al • ~

A,rJ ~
Convex set generated by A2

Figure 4.6. Convex sets generated by Al and A•.
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Figure 4.7. The set of utilities u available to Mr. Campbell through
fair bets if he has M thousands of dollars. The set is obtained by

taking the convex set generated by Mr. Campbell's utility
curve for money.
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Exercise 4.21. Some large companies do not carry insurance
against certain kinds of losses, e.g., small fires; most householders
do, Might both be acting in a reasonable way? Why?
Exercise 4.22. What is the best fair bet for Mr. Campbell to

make if he has $4000? If he has $500?
Exercise 4.23. Suppose he has $4000 and is offered a fair bet

yielding a profit of $2000 with probability 1/3 and a loss of $1000
with probability 2/3. Shouldhe accept the bet? Supposehe is offered
a compound bet where win or lose he has to repeat the above bet
a second time. Should he accept the bet? (It is necessary to calcu-
late the utilities and probabilities for all final outcomes.)
*Exercise 4.24. What is the convex set generated by two points?

What is the convex set generated by three points? Place five points
haphazardly on graph paper and construct the convex set generated
by these points.
Exercise 4.25. Mrs. Steele escorts her husband to the airport.

For 25 cents she can get $6250 worth of insurance. Mr. Steele
ridicules the idea. He does not expect the plane to crash. Besides,
he once had a course in probability theory and explains that the
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insurance company must make a profit and this must be done by
not giving people their money's worth in insurance. In fact, he
estimates (probably incorrectly) that the probability of his wife
collecting is only 1/62,500 and, to be "fair," the insurance com-
pany should charge only a dime instead of a quarter. Unfortunate-
ly, the insurance company has certain clerical expenses and is out
to make a profit, thus, it insists on charging a quarter. Although
Mr. Steele is opposed to the insurance, Mrs. Steele knows that by
crying she can get him to agree to it. Should she invest? Give an
argument for or against the insurance, and make use of certain
utilities which you should be prepared to defend as reasonable.

t5. THE ST. PETERSBURG PARADOX

A very interesting example, only a few aspects of which will be
discussed, is called the St. Petersburg Paradox. Suppose that a
man tosses an ideal coin until heads appears. Then the game is
over. He receives X= 2N cents, where N is the number of tosses
of the coin. Thus, if heads appeared for the first time on the third
toss, he collects 8 cents. It is to his advantage to get a very long
run of tails before heads appears. With probability one, heads
will eventually appear and he will collect some money. What is
the expectation of the amount of money he will receive? In other
words, how much should he pay for the privilege of playing this
game to make it a "fair" game. In the discussion of Section 4,
Chapter 3, we indicated that

P{N = i} = 1/21•

For example, P{N = 1} = 1/2, P{N = 2} = 1/4, P{N = 3} = 1/8,
etc. Hence, P{X = 2} = 1/2, P{X = 4} = 1/4, P{X = 8} = 1/8,
etc. Then,

E(X) = 2P{X = 2} + 4P{X = 4} + 8P{X = 8} + ...
= 2(1/2)+ 4(1/4)+ 8(1/8)+ ...
= 1 + 1 + 1 + ... = 00 (symbol for infinity) .

Three questions arise from this example.
1. What do wemean by the statement E(X)=l+l+l + ... = oo?

The equation 1+ 1+ 1+ ... = 00 expresses the following fact.
No matter how large a number you take, say 7345, eventually, as
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we keep adding terms, the sum will exceed that number. The
sym1Jol00 is not to be construed as a number in the ordinary sense.
The statement E(X) = 00 means the following. No matter how
large a number you take, say 7345, if you play this game many,
many times, eventually you will average more than that amount
per game. (It is a peculiarity of this problem that an immense
number of games must be played before you can be reasonably
sure of averaging more than 20 cents per game.) If we were
capable of and interested in playing this game indefinitely, then
there would be nb amount of money that we could offer to make
this a " fair" game. Paradoxically, no one seems willing to offer
a mere $5 to play this favorable game once.
2. No one can offer us $7 billion if we should have a very long

run of tails. Suppose we take into consideration the limited bank-
roll of the bookie in deciding the expectation of the winnings.
Then how much should we pay to make the limited game a "fair"
game? Suppose the bookie is rather poor and has only 2"" cents or
$ 335,544.32. Then as long as X < 2"", we collect X cents. If
X ~ 223, that is, if we get 24 tails in a rowand, hence, N ~ 25,
we collect his entire bankroll, a mere $335,544.32, and no more.
Suppose we call the winnings of this modified game Y. What is
E(Y)? To compute this, we note that

P{Y = 2} = P{X = 2} = P{N = 1} = 1/2
P{Y = 4} = P{X = 4} = P{N = 2} = 1/4

P{Y = 2"} = P{X = 221} = P{N = 24} = 1/2"'
P{Y = 2""} = P{X ~ 2""} = P{N ~ 25}

= 1/2'5 + 1/2'6 + ... = 1/2".1

Hence
E(Y) = (1/2)2 + (1/4)4 + (1/8)8 + ... + (1/221)221 + (1/221)2'5

E(Y) = 1 + 1 + 1 + ... + 1 + 2
2j,"iimes

E(Y) = 26.

1 This result is based on the fact that 1/225 + 1/226 -I- ... = (1/22l){1/2 + 1/4
+ 1/8 + ... } and 1/2 + 1/4 -I- 1/8 + ... = 1.
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Thus, when playing against this poor bookie with less than a half
million dollars in his bankroll, the game is worth only 26 cents from
the point of view of expectation of money.
3. How much sJwuld we be willing to pay for the privilege of

playing either game (the unlimited one or the one with the poor
bookie) once? The authors, after some introspection, have decided
that they would be willing to pay about 10 cents for either game.
This amount is less than the expectation. The reason for this in-
volves the shapes of our utility functions for money. If we were
interested enough to want a more precise estimate of what the
game was worth, we would try to draw a graph of our utility func-
tion for money. Then a simple computation would give us an
approximate answer.
Another issue of some importance arises from this "paradox."

Suppose that Mr. Campbell wonders whether his utility function is
unbounded. Given any number, say 7345, can he be sure of find-
ing a prospect P so wonderful that u(P) > 7345? The answer is
"No." For, suppose his utility were unbounded, then there are
prospects PH p••... such that u(P1) ~ 2, u(P,) ~ 2', u(P3) ~ 23,
etc. But then the mixed prospect Pwhich yields him PIwith proba-
bility 1{21would have utility

u(P) ~ (1{2)2+ (1{22)2'+ (1{23)23+ ... = =.
But this is impossible since P is a prospect and its utility is a (finite)
number. Hence the utility function must be bounded.
In this argument we have used the St. Petersburg game to

demonstrate that the utility function is bounded. Hereafter this
fact will be called the third utility function property.

6. DESCRIPTIVE PARAMETERSl

In the preceding sections we considered several examples where
Mr. Campbell had a choice of several actions. These were whether
to gamble or not to gamble and, if he decided to gamble, to make
a choice among various bets. In each case the action he took de-
termined a probability distribution (which we assumed to be known)
on the possible outcomes and a corresponding utility. His object
1 It is suggested that this section be covered only partially until the course

reaches estimation.
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was to select the action which led to the greatest utility.
In many examples of statistical interest, where the relevant

probability distributions are assumed to be known (because there is
a great deal of data available) the utility can be expressed in terms
of a simple property or characteristic of the probability distribu-
tion. Hence, knowing this property or characteristic of the proba-
bility distribution is of fundamental importance in deciding whether
to take the corresponding action. A property of a probability dis-
tribution is called a parameter. If this property is relevant in
that utility depends greatly on it, it will be called a descriptive
parameter. Parameters are usually denoted by Greek letters and
exceptions to this rule (which are due to ancient custom) will be
clearly pointed out. We illustrate the notion of descriptive para-
meters with some examples.
Example 4.3. Target Slwoting. Among Mr. Sheppard's large

collection of rifles, there is one he generally prefers to use. Even
though this rifle tends to point in a direction slightly different from
the one in which it is aimed, Mr. Sheppard compensates for this
" bias" and does very well at target shooting. We shall explain
his principle for the simple case where we are interested only in
how far to the right or left of the target we hit. For simplicity
we ignore the possibility of misses due to vertical errors. This as-
sumption is quite reasonable for bowling or croquet. Suppose that
the rifle, when aimed directly at the target, hits a point X units to
the right of the target. Negative values of X represent distances
to the left of the target. Because the rifle is not a perfect device,
and Mr. Sheppard's position tends to vary slightly from one shot
to another, and sometimes winds blow and the amount of powder
in a cartridge tends to vary slightly, etc., X is a random variable.
Mr. Sheppard has studied the probability distribution of X very
carefully and claims to know it well. Suppose Mr. Sheppard aims
at a point a units to the right of the target. Then, instead of
hitting X, which he would if he aimed at the target, he will hit

Y = X + a.

Mr. Sheppard feels that if he hits Y instead of 0 he will lose an
amount of utility equal to

l(Y) = 2.3Y'.
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If Mr. Sheppard is correct, then in selecting an aiming point a,
he is selecting a probability distribution for Y and a corresponding
expected loss of utility which is given by

L(a) = 2.3E(Y2) = 2.3E[(X + a)'].

Mr. Sheppard should aim at that point a for which L(a) is a mini-
mum. In Appendix E. we prove that

L(a) = 2.3E[(X + a)2] = 2.3{E[(X - JLx)']+ (JLx+ a)2}

where JLx,the (population) mean of X, is defined by
JLx= E(X).

But the above equation states that L(a) is at least equal to
2.3E[(X - JLx)']and is greater than that except when a = -JLx.
Hence the value of a which minimizes L(a) is a = -JLx. Hence, in
this example, the mean of the population is a fundamental param-
eter. The corresponding expected loss is 2.3 times E[(X - JLX)2]
which is called the (population) variance and is denoted by ui.
Exercise 4.26. Mr. Sheppard has several other rifles. On what

basis should he select one of these rifles?
It is only fair for the authors to say a few words about why

Mr. Sheppard felt he could choose ley) = 2.3Y', and why this
example plays a very important part in the theory of statistics.
Previously we pointed out that, if a small section of a smooth

curve were magnified tremendously, it would look like a straight
line. Related to this statement is the following. Suppose l is a
function whose graph is a smooth curve. Suppose this curve never
goes below the horizontal axis but touches it when the abscissa is
zero. In other words, the function l assumes its minimum at zero.
See Figure 4.8 for an example.
For most graphs with this property, encountered in practical ex-

perience, the following can be said. If the curve is magnified near
the minimum, it looks very much like a straight line. To the ex-
tent that it is not straight, it looks like a "parabola" which is
given by some function f of the form

f(x) = ex'

where e is some positive number. To illustrate, we plot a parabola
next to a curve in Figure 4.8.
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Figure 4.8. The graph of a smooth function l attaining its minimum
at (0, 0) approximated by a parabola.

Now the loss of utility suffered by Mr. Sheppard when he misses
by Y ordinarily would be expected to behave like a curve with the
above-described properties. It should be smooth and reach its min-
imum at Y = O. Hence, for smallmisses, Mr. Sheppard is approxi-
mately correct in approximating his loss by cY2 for some number
c. Mr. Sheppard insists that he does not intend to make any big
misses and so he is willing to consider his approximation a good
one. Strictly speaking, the important issue is the following. Does
the method which minimizes the expectation of his approximation
give a good result in terms of the true loss? As long as the ap-
proximation is very good for the misses which are liable to occur,
it is generally reasonable to assume that the answer is yes. It
should be kept in mind that minimizing the expectation of the
approximation yields an approximation to the best action.
What is the importance of this problem in statistics? Generally,

statisticians have not been extremely interested in Mr. Sheppard's
problem. However, it is similar to one which is very interesting
to statisticians, namely, the problem of estimation. Frequently a
statistician is interested in estimating a parameter {}(property of
a probability distribution). He bases this estimate on a statistic
(property of the observations) T. This statistic T is a random vari-
able and the measure of its " goodness" is in terms of how much
T tends to differ from {}. For many examples, the expected loss of
utility associated with using T as an estimate of {}is approximated
by

cE[(T _ (})2].

The analogy between this problem and Mr. Sheppard's is clear
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and more will be said about it in the chapter on estimation.
Example 4.4. Mr. Butregs owns a cowwhich he wishes to com-

pare with a new one being offered to him for trade. Since his farm
can support only one cow, he wishes to know which is better. If
he keeps his old cow for a year, her total production will be

T = X, + X2 + ... + X365

where Xi is her milk production on the ith day, and his resulting
utility will be represented by

G =f(T) =f(X, + X2 + ... + X365)

where f is an increasing function. That is to say, as T increases
f(T) increases. If he trades the old cow for the new one, the new
one will have total production

T* = Y, + Y. + ... + Y365

where Yj is her production on the ith day, and his resulting utility
will be represented by

G* = f(T*) = f(Y, + Y. + ... + Y365).

If we assume that the Xl have a commondistribution, that of X,
and that the Yj have the distribution of Y, then

X, + X. + ... + X365

365
will be close to flx = E(X). Similarly,

Y, + Y. + ... + Y365

365
will be close to fly = E(Y). It follows that, if flx > fly, T will al-
most surely be larger than T* and, therefore, G will be larger
than G*. In other words, the choiceof cowshould bemade according
to which cow has greater expected daily milk production.
This same principle was used to tell us that, if we have a choice

of playing a game many times, we should do soonly if the expected
money gain is positive.
Example 4.5. Mr. Heath wishes to build a warehouse on EI

Camino Real. EI Camino Real is a major highway in California
along which many communities are built. These communities clus-
ter very closely to the highway and, in combination, resemble a
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community consisting of a long line. Suppose that a prospective
customer for the warehouse will be in position X along the highway.
If the warehouse is at position a, the cost of delivering is propor-
tional to the absolute value of X-a. That is to say, we assume
that, except for the fixed loading and unloading costs, the main
cost of delivering is the time it takes to travel along the highway
to the destination and back. Assuming that his utility is a decreas-
ing function of the total amount of distance traveled to his custo-
mers, Mr. Heath applies the argument of Example 4.4. According-
ly he decides to select a so as to minimize

E(IX - aD
since IX - al is the distance he must travel to his customer.! What
value of a will he select? In the Appendix E4 it is shown that the
minimizing value of a is the (population)median Vx of the probabi-
lity distribution of X. It is clear that for Mr. Heath a relevant
measure of the variability of X is given by the absolute deviation
E(IX - VXD.2

Exercise 4.27. Draw a graph of the function j given by j(x) = Ixl
and compare it with that of g where g(x) = x2• Note that both are
minimized at 0 but that the first is not smooth while the second is.
*Exercise 4.28. Illustrate that the median minimizesE(lX - aD as

follows. Let X take on the possible values -3, -1, 0, 3, 5 with
probabilities 0.2, 0.4, 0.1, 0.1, and 0.2 respectively. Compute
E(jX - aD for a = -2, -1,0, 1,and any other values you wish to
try. What is the median of X? Dothese computations corroborate
the stated result?
Example 4.6. Mr. Heath was originally in the shoe manufactur-

ing business. He made his first entry into business by buying an
old machine which could manufacture shoes. But once it was ad-
justed, it would take over a week to readjust for a different size.
Rather than put out shoes of various sizes at the cost of production
1 We use 1a 1 to denote the positive value of a. Thus 1- 21 = 121 = 2. It is

usually called the absolute value of a.
2 The median of the probability distribution of a random variable X is a number

"X for which it is true that
P{X<vx} ~O.5~P{X~vx}.

For some random variables, there may be an interval of numbers, anyone of
which will serve as median.



112 ELEMENTARY DECISION THEORY

delays, Mr. Heath decided to chooseone size and manufacture that
size exclusively.
Mr. Heath's utility function was clearly an increasing function

of the number of shoes he could sell in a given period (till his mort-
gage payment was due). He figured that, if he put out a size a, he
would be able to sell to a customer whose foot size was between
a - 1/2 and a + 1/2. He assumed that a large number, n, of
customers would go to his retail outlet and be interested in the style
he manufactured. Out of these, m would have size between a - 1/2
and a + 1/2. If we assume that the foot sizeof a customer is a ran-
dom variable X then min will be close to P{a - 1/2 ~ X ~ a + 1/2}.
Hence he would maximize his utility by selecting the value of
a which maximizes P{a - 1/2 ~ X ~ a + 1/2}. Suppose X has a
continuous distribution whose density is given by a smooth curve.

y

x

Figure 4.9. The distribution of foot size. Shaded area represents
the probability that a random customer will be fit by a shoe of size a.
This area is approximated by the area of the rectangle with base from

a - 1/2 to a + 1/2 and height fla).

See Figure 4.9. Then P{a - 1/2 ~ X ~ a + 1/2} is the area be-
tween the graph and the horizontal axis for abscissas between
a - 1/2 and a + 1/2. It is clear that one can approximately maxi-
mize this quantity by letting a be that abscissa for which the den-
sity is greatest. This abscissa is called the mode of the distribution
of X.
In these examples we have illustrated that there are problems

where the following characteristics of a probability distribution are
of fundamental importance: (1) Mean: Ilx = E(X). (2) Variance:
(J"'x = E[(X - Ilx)']. (3) Median. (4) Mode. For other problems
other characteristics will be important. If a large sample is availa-
ble, we can approximate these characteristics of the population by
taking an analogous property of the sample. Thus for large samples
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X is close to flx, dk is close to a-k, the median of the sample is close
to the median of the population and the mid-point of the interval
of the histogram with the largest frequency will be close to the
mode.
For the time being we will interpret our interest in Chapter 2 in

these sample properties as an attempt to approximate the corre-
sponding population properties. Thus, if Mr. Heath had available
a large sample of shoe sizes, he would not necessarily compute the
sample mean or variance. He may be interested mainly in the
sample mode.
Exercise 4.29. In Figure 4.10 we plot utility u against p, the

probability that a random customer will be fit by his shoe. We know
(but Mr. Heath does not) that the shoe size X of the random cus-
tomer is almost normally distributed with fl = 14 and a- = 1.5.
What is Mr. Heath's utility if the shoe size he manufactures is 13?
14? 15? Construct a graph giving U(a) which is the utility if he
decides to manufacture size a.
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Figure 4.10. The utility u corresponding to the probability p that a
random customer will be fit by a shoe manufactured by Mr. Heath.

Exercise 4.30. Locate the mode and median for the distribution
given in Figure 3.10.
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7. THE MEAN AND VARIANCE

In Chapter 2we indicated someproperties relevant to the theory
and computation of the sample mean and sample variance.
Analogous properties hold for the population mean and variance.
We designate
1. The mean of X by /lx = E(X).
2. The variance of X by <T~ = E[(X - /lxY].
3. The standard deviation of X by <Tx.

Referring to Example 4.3, it is clear that /lx is a measure of the
" center" of the distribution of X and <Tx is a measure of the
tendency of X to vary. The smaller <Tx, the more accurate is Mr.
Sheppard's rifle or, more precisely, the greater is his utility. In-
terest in the precision of an instrument (other than a rifle) often
leads to primary attention focusing on the standard deviation.

7.1 Some Properties of Mean, Variance, and Standard Deviation1

1. E(X - /lx) = O.
2. <T~ = E(X2) - /l~.

3. If Y = a + bX and b is positive, then

/ly = a + b/lx

and
<Ty = b<Tx,

X - /lx4. IfY=-~~

then
/ly = 0

and
<Ty = 1.

Note that Property 3 has the same interpretation as its analogue
for sample properties. That is, if you multiply a random variable
by a positive constant, you multiply both its mean and its standard
deviation by the same constant. If you add a constant to a random
variable, you add a constant to its mean but leave its standard de-
viation unaffected. The operation which gives Y = a + bX is a

1 See Appendix E4•
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combination of first multiplying by b and then adding a, and the
above results are only reasonable.
The random variable Y of Property 4 is obtained from X by sub-

tracting the mean and dividing by the standard deviation. This
operation is sometimes called "standardizing." It essentially
shifts the mean to zero and brings the standard deviation to one.
Sometimes when it is desired to compare the shapes of two proba-
bility density functions, it pays to standardize the corresponding
random variables first.
We illustrate how to compute expectations, means, and variances

for discrete random variables. Suppose that X can equal 3, 5, 6,
9, and 10 with probabilities 0.2, 004, 0.2, 0.1, and 0.1 respectively.

TABLE 4.1

COMPUTATION OF EXPECTATIONS

Probabilities Possible Values of

p X X2 (X - 5.7)2 2X-l

0.2 3 9 7.29 5
0.4 5 25 0.49 9
0.2 6 36 0.09 11
0.1 9 81 10.89 17
0.1 10 100 18.49 19

Expectation 5.7 37.1 4.61 10.4

Here we obtained 5.7 by cumulating the products 0.2 x 3 + 004
x 5 + 0.2 x 6 + 0.1 x 9 + 0.1 x 10. The other expectations were
obtained similarly. Since Ilx = 5.7, it follows that

IT~ = E[(X - 5.7)2] = 4.61.

This result could also be obtained by the formula

CT~ = E(X2) - Il~ = 37.1 - (5.7)2 = 4.61.

We computed E(2X - 1) = lOA to verify the formula

E(2X - 1) = 2E(X) - 1.

Observe that an expectation is not a random quantity. It is a
number which is completely determined by the probability distribu-
tion.
*Exercise 4.31. Identify each of the following expressions as

random, a constant not necessarily zero, or zero.
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" -(a) E(X, - X)
1=1

(c) lT~

(d) E(XY)

(e) XE(Y)

"(f) E(X, - Px)
I-I

*Exercise 4.82. The random variable X can equal -1, 2, 6, and
9 with probabilities 0.2, 0.3, 0.3, and 0.2 respectively. Compute
the mean, variance, and standard deviation of X. Compute the
mean and variance of X2•

For the normal distribution, fl and IT do actually represent the
mean and standard deviation. In fact, if X has a normal distribu-
tion with mean 0 and standard deviation 1, E(X) = 0, E(X2) = 1,
E(X3) = 0, E(X') = 3, E(X") = 0, E(X6) = 15, •••. Furthermore,
Y = a + bX has a normal distribution with mean a and standard
deviation b if b is positive.
Exercise 4.88. If Y has a normal distribution with mean a and

standard deviation b, compute E(Y3).

Hint: y3 = (a + bX)3 = a3+ 3a2bX + 3ab2X2+ b3X3, where X is
normally distributed with mean 0 and standard deviation 1.
Exercise 4.84. Let X be a random digit. Compute E(X) and lTx.

Exercise 4.85. (a) Let X be the outcome of the throw of an ideal
die. Compute E(X), lT~, and lTx. (b) Let Y be the sum of the faces
showing upon the roll of two ideal dice. Compute E(Y), lTh and
lTy.

Exercise 4.86. Compute E(X) and lT~ for X equal to the number
of heads resulting from one toss of a bent coin with probability p
of falling heads.
Exercise 4.87. Compute E(X) and lT~ for X equal to the number

of heads resulting from n tosses of an ideal coin for n = 1, 2, and
3.

°Exercise 4.88. Compute E(X) and lTx for X equal to the outcome
of the well-balanced diaJ.1
°Exercise 4.39. Compute E(X) and lTx for X the outcome of the

St. Petersburg game against the bookie with only 225 cents.
1 This problem requires calculus. See the discussion after Consequence 6 of

Appendix E,.
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8. SUMMARY

If many observations Xu X••••• , X" are taken (under similar
circumstances) on a random variable X, the average X of these
observations will tend to be very close to E(X). If X has a discrete
distribution and takes on the values XI' X., "., with probabilities
PH P., •.• , then

E(X) = PIXI + P~s + ... =Ep,x,.,
If a gambler with a large bankroll continually plays a game

where each play yields a relatively small money gain of X dollars
to him, this game will be profitable to him in the long run (his
utility will increase) if E(X) > O. If E(X) < 0, this game will be
unprofitable to him in the long run. If time is worth money and
E(X) = 0, the game will also be unprofitable eventually.
If the gambler has only the option of playing the game once, and

X is relatively large compared to the bankroll, then E(X) is not the
only relevant parameter of the distribution. The variability of X
would tend to be important and, in general, the entire probability
distribution is relevant. Essentially, what must be done in this
situation is to consider utility. Applying certain mild assumptions,
it can be shown that a person can attach to his prospect P a number
u(P) called the utility of the prospect.
The utility function has the properties:
1. u(PI) > u(Ps) if and only if PI is preferred to p•.
2. u(P) = E[u(P)] if P is the prospect of facing P where P may

be random.
3. The utility function is bounded.
The second property essentially states that, even though the ex-

pectation of money may not be completely relevant, the expecta-
tion of utility is.
In certain fundamental applications of various degrees of im-

portance, it was shown that utility is essentially determined by
certain parameters (properties of the relevant probability distribu-
tions). The descriptive parameters discussed in the various examples
were: the mean, the variance, the median, and the mode.
The discussion of this chapter is based on the assumption that

the state of nature and, hence, all relevant probability distribu-
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tions are known. The only ignorance treated is that due to ran-
domness.

Exercise 4.40. What is the expected sum obtained in tossing five
well-balanced dice?
*Exercise 4.41. Let X, = 1 if the ith voter polled in a sample of
100 Phiggindians favors prohibition. Let X, = 0 otherwise. Let
Y = the number of voters in the sample who favor prohibition.
Then Y = Xl + Xz + ... + XllJO' Suppose that 40% of the entire
population of Phiggindian voters favor prohibition. Find: (a)
E(X,); (b) E(Y) ; (c) E(X) ; (d) O"~" (Hint: see Exercise 4.36.)

oExercise 4.42. Compute the mean and standard deviation of X
in Exercise 3.41. I

oExercise 4.43. A well-balanced coin is tossed until heads appears.
Let X be the number of tosses. Compute the mean and standard
deviation of X.
Exercise 4.44. Mr. Jones' utility for money is given by u =

lOx - X
Z for 0 ~ x ~ 3, where x is money in millions of dollars. He

has $1 million. Does it pay for him to take" fair" bets? (Ignore
income tax considerations.)
Exercise 4.45. Mr. Jones in the above exercise has an opportuni-

ty to invest his money so that he will end up with X million dol-
lars, where X has density given by f(0)=0.1,f(0.5)=0.2, f(l.O)=
0.1, f(2.0) = 0.4, and f(3.0) = 0.2. Should he invest? Is the game
" fair"?

SUGGESTED READINGS
[11 Luce, R. D., and Howard Raiffa, Games and Decisions, John Wiley & Sons,

New York, 1957.
[2] Von Neumann, John, and Oskar Morgenstern, Theory of Games and Economic

Behavior, Princeton University Press, Princeton, first edition, 1944, second
edition, 1947.
Reference [2] was the first book on the modern theory of games and has a

detailed discussion of utility theory, but it is written from a mathematically
advanced point of view. The more recent book of Reference [1] is elementary
and comprehensive. Considerable space is devoted to a critical discussion
of the ideas and concepts in utility, game, and decision theory.

[3] Davidson, D., Patrick Suppes, and Sidney Siegel, Decision Making: An
Experimental Approach, Stanford University Press, Stanford, 1957.
This book is concerned with the experimental measurement of utility.

I This problem requires calculus. See discussion after Consequence 6, Appendix
E4•



CHAPTER 5

Uncertainty due to Ignorance of
the State of Nature

1. INTRODUCTION

In Chapter 4 we discussed the case where the only uncertainty
was due to randomness. The state of nature was assumed to be
known. In this chapter we shall discuss the case where there are
several possible states of nature, and it is not known which is the
true state. The contents of this chapter could be very adequately
presented without reference to any graphs. On the other hand, we
shall supplement our discussion with a good many pictorial repre-
sentations. These will be presented on the assumption that they
add to the understanding and that they contribute a useful point
of view.

2. TWO STATES OF NATURE-AN EXAMPLE

In this section we shall treat in great detail a problem involving
two states of nature. The problemselected is deliberately simplified
so that all possiblestrategies can be examined and compared. Brief-
ly, we shall allow only one observation with three possible values
and only three possible actions. As we shall see, this will allow
only 27 possible strategies which will be enumerated.

Example 5.1. Mr. Nelson, a visitor to North Phiggins was in-
formed that when it rains in North Phiggins, it really rains. In
fact, it seems that on rainy days it starts pouring at 11 A.M. and
does not stop until 11 P.M. Hence, before leaving his room in the
morning, he was advised to refer to a rain indicator before decid-
ing which outfit of clothes to wear. The rain indicator can indicate
(1) fair, (2) dubious, and (3) foul. Mr. Nelson has three outfits-a
fair weather outfit, one with a raincoat, and one with raincoat,
boots, umbrella, and rain hat. The rain indicator states how often

119
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rainy days are preceded by indications of fair, dubious, and foul,
and how often clear days are preceded by these indications. How-
ever, Mr. Nelson has no idea about how often it rains in North
Phiggins.
In detail, the situation is the following. There are two possible

states of nature. These are:
8J: Today is a sunny day.
8.: Today is a rainy day.
There are three available actions. These are:
a1: Wear fair-weather outfit.
a.: Wear outfit with raincoat.
a3: Wear outfit with raincoat, boots, rain hat, and umbrella.
Mr. Nelson, having been informed of how heavily it rains and

considering the burden of carrying heavy coats and boots and the
embarrassment of being improperly clothed, has constructed a table
of losses of utility (Table 5.1).

TABLE 5.1

MR. NELSON'S Loss OF UTILITY 1(8, a)

~I
81 (no rain) I
8. (rain)

o
5 3

3

2

It is customary to denote by zero the loss for the most favorable
combination of 8 (state of nature) and a (action) and then to compare
all other (8, a) with this best combination. In this way, we have
the slight convenience that none of the losses are negative. Please
note that the use of losses instead of actual utilities is quite arbi-
trary. It should have no influence on the problem of decision mak-
ing. We use losses to be consistent with statistical traditions which
seem to have been founded on a somewhat conservative and pessi-
mistic point of view.
Being a reasonable person, Mr. Nelson plans to base his action

on the evidence concerning 8 given by the weather indicator. His
experiment is the rather trivial one of observing the indicator
before dressing. The random variable observed is X, the weather
indication, and it can assume one of the following three possible
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values:
XI: Fair weather indicated.
X2: Dubious.
Xg: Foul weather indicated.
The probability distribution of.X depends on the state of nature.

The probabilities are given in Table 5.2 which is attached to the
weather indicator.

TABLE 5.2

PROBABILITY OF OBSERVING A WEATHER INDICATION x WHEN 9 IS THE TRUE
STATE OF NATURE; f(x \9) = Pix = x 19}

91 0.60 'i 0.25 0.15

9. 0.20 0.30 0.50

It may be remarked that a really ideal weather indicator would
IIbe one where the 0.60 and 0.50 were replaced by one, and all other

entries by zero. Because this indicator is far from ideal, North
Phiggindians occasionally find tJ1emselves improperly dressed.
Now Mr. Nelson must decide how he will react to the weather

indicator. This plan of reaction is a strategy. Mr. Nelson lists all
possible strategies. These are given in Table 5.3. Many of these

TABLE 5.3

A LIST OF ALL POSSIBLE STRATEGIES. EACH STRATEGY 8 INDICATES THE ACTION
A = 8(X) TAKEN IN RESPONSE TO AN OBSERVATION X

181 8. 8g 8, '5 86 87 88 89 810 811 812 813 814 815

XI al al al al al al al al al a- a. a- a. a2 az

X. al al al a- a- a. ag a. ag al al al a. a2 a2

Xg al a- ag al a. ag al a- ag al a.. ag al a. ag

\816 817 818 819 821)821 8•• 8.g 8" 8.5 826 8.7

XI a. a. a- ag a3 a3 a3 ag ag ag ag ag

I

X. ag ag Ug al al al a- a. a. ag ag a.

X3 al a. ag al a- ag al a- ag al a- Ug
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strategies seem ridiculous while others seem reasonable. For ex-
ample, 822 is the contrary man's strategy. It is the strategy where
the action taken is the opposite of the one that would seem indicat-
ed. The strategies 811 814, and 827 ignore the data. They correspond
to the possible strategies of an absent-minded person who forgets
to look at the ~ndicator. On the other hand, 86,89, 815, and 818 are
reasonable strategies of various degree of conservatism.
Now Mr. Nelson decides to evaluate all of these strategies. He

computes the expected loss of utility L(8, 8) corresponding to each
state of nature 8 and each strategy 8.

TABLE 5.4

EXPECTED Loss OF UTILITY, L(6, 8)

~ategY.8

State of~
Nature, 6 ~ 81 82 83 84 85 86 87 88 89

61 10.00 0.15 0.45 0.25 0.40 0.70 0.75 0.901.20
62 5.00 4.00 3.50 4.40 3.40 2.90 4.10 3.10 2.60

I 810 811 812 813 814 815 816 817 818

I
0.600.75 1.050.85 1.00 1.30 1.35 1.50 1.80
4.60 3.60 3.10 4.00 3.00 2.50 3.70 2.70 2.20

I 819 820 821 822 823 824 825 826 827

I
1.80 1.952.252.052.202.502.552.703.00
4.40 3.40 2.90 3.80 2.80 2.30 3.50 2.50 2.00

The entries in Table 5.4 are easily computed in the manner used
in Chapter 1 for computing expected losses. We illustrate by in-
dicating the action probabilities and expected losses for the
strategies 85 and 8•• in Table 5.5 and by computing the row corre-
sponding to 81 and 85, Then we take action ai, if X = XI1 which
has probability 0.60. We take action a.., if X = X2 or x3, which has
probability 0.25 + 0.15 = 0.40. We never take action a3• Thus
actions ai, a•• and a3 which give losses of 0, 1, and 3 are taken with
probabilities 0.60,0.40, and 0, yielding an expected loss of (0.60)0+
(0.40)1 + (0)3 = 0.40.
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TABLE 5.5

LOSSES. ACTION PROBABILITIES AND EXPECTED LOSSES FOR STRATEGIES 86 AND 8~~

Action Expected
Losses Probabilities Loss

State of For 86 = (al. ~. ~)

Nature al a~ a;, al a2 a3

81 0 1 3

I
0.60 0.40 0 0.40

82 5 3 2 0.20 0.80 0 3.40

For 822= (a;" a2, al)

I al ~ a3 al ~ a3

81

I
0 1 3 I 0.15 0.25 0.60 I 2.05

8~ 5 3 2 0.50 0.30 0.20 3.80

Exercise 5.1. Compute the action probabilities and losses for
strategy S1O'

Exercise 5.2. Use the table of random digits to select an obser-
vation according to the probabilites corresponding to 01, Apply
S10 to this observation and list the corresponding action and loss.
Repeat ten times and average the ten losses.
*Exercise 5.3. If Mr. Nelson replaced his weather meter by a

crystal ball which told him the state of nature, 0, reasonable use of
this information would provide him with ideal action probabilities.
Present this table of ideal action probabilities. These are called
ideal because with ordinary information nOstrategy could do this
well.
Since there are two expected losses for each strategy, one cor-

responding to each 0, we can represent a strategy by a point on a
graph the coordinates of which are these two expected losses. The
abscissa will be the expected loss when 01 is the state of nature and
the ordinate the expected loss when O2 is the state of nature. The
strategies correspond to the labeled points in Figure 5.1.
A desirable strategy is one where both expected losses are small,

i. e., where the point representing it is as far to the left and as low
as possible. Thus it is clear from the figure that, of all the strate-
gies, the only ones entitled to serious consideration are S11 s•• S6,
S6, S9, S16, S18, and S27' The other strategies are inadmissible because
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£1 = £(81.8)

Figure 5.1. EXjJectedloss points (LI, L.) = (L(OI, 8), L(O., 8)) for 27
strategies in Mr. Nelson's rain problem.

each of them is dominated by one of these. For example, 83, which,
on reference to Table 5.3 seems to be a reasonable strategy, is
dominated by 85, That is to say, if 81 were the state of nature, the
expected loss £(81) 83) = 0.45 would be larger than £(81, 85) = 0.40,
and if 8. were the'state of nature, the expected loss L( 8•• 83) = 3.5
would be larger than £(8•• 85) = 3.4. Hence, no matter what the
state of nature, 8. will yield a smaller expected loss than 83, Graphi-
cally, the point representing 85 is both below and to the left of the
one representing 83,

Although we have reduced our problem to considering only the
eight strategies indicated above, it is not clear which of these is to
be preferred over the others. In fact, Mr. Nelson has decided that
he likes 86 and 815, but he cannot decide between them. Finally in
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desperation he decides to toss a coin. If it falls heads he will apply So

and if it falls tails he will apply 815, In his desperation Mr. Nelson
has uncovered a new type of strategy. This strategy is called a
mixed or randomized strategy. The expected losses corresponding
to this strategy are easily evaluated. For example, if (}1 were the
state of nature, he would with probability 1/2 select 80 with ex-
pected loss of utility of 0.70, and with probability 1/2, he would
select 815 and have an expected loss of 1.30. Hence, his expected
loss for this mixed strategy would be (1/2)(0.70)+ (1/2)(1.30)= 1.
On the other hand, if {}.were the state of nature, his expected loss
would be (1/2)(2.9)+ (1/2)(2.5)= 2.7. Graphically, this strategy
is represented by a point midway between those represented by 80
and 815,
This mixed strategy may be interpreted from a slightly different

point of view. Both strategies 80 and 815 lead to a response of az if
x. is observed, and a3 if X3 is observed. They differ only if Xl is
observed. Hence, the mixed strategy may be described as follows.
If Xl is observed, toss a coin to decide between actions a1 and a•.
If x. is observed, action az is taken, and if X3 is observed, aa is taken.
This strategy has the somewhat disconcerting property that the
actions taken may depend not only on the outcome of the experiment
but may al80 depend in part on the irrelevant t088 of a coin.
Nevertheless, whatever criterion is to be used in judging this
strategy, that criterion should involve not the way this strategy
was selected but its consequences, i.e., the expected losses in both
states of nature.
Mr. Nelson's strategy of taking 80 and 815, each with probability

1/2, is not the only possible mixed strategy. For example, he could
have used a strategy which yields 815with probability 1/4, and 80with
probability 3/4. His expected losses would have been

(3/4)(0.70)+ (1/4)(1.30)= 0.85
and

(3/4)(2.9)+ (1/4)(2.5)= 2.8
which gives the point 1/4 of the way from 80 toward 815 (see Figure
5.1). In general, if 8 and 8' are any two strategies mixed or other-
wise, and 8' is selected with probability p and 8 with probability
1 - p, then this mixture of 8 and 8' is represented by a point which
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is p part of the way from 8 to 8'. Thus every point on the line
segment connecting the points representing 8 and 8' represents
some strategy. But this means th~t the set of points representing
strategies is convex. (A convex set is a set which contains all line
segments connecting points of the set.) In fact, the set of points
representing strategies is the smallest convex set containing the
original unmixed or pure strategies. See Figure 5.2.

5.00

3.00

-;;-
<i' 2.50
~
II.s 2.00

s27

1.50

1.00

0.50

00 0.50 1.00 1.50 2.00 2.50 3.00
L1 = L(1J1,s)

Figure 5.2. Expected loss points (L1, L2) = (L(91, 8), L(92, 8» for all
strategies mixed and pure in Mr. Nelson's rain problem.

One interesting phenomenon indicated by Figure 5.2 is that 89

lies above the line segment connecting 86 and 815 and, hence, is
dominated (inadmissible). For example, taking 86 with probability
1/4 and 816 with probability 3/4 yields the point with coordinates

(1/4)(0.70)+ (3/4)(1.30)= 1.15
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and

(1/4)(2.9) 1- (3/4)(2.5) == 2.6
which is directly to the left of the point representing S9'

*Exercise 5.4. Suppose that there is rain in North Phiggins about
2/3 of the days. Then the expected loss corresponding to a strategy
is (1/3)L(O}, s) 1- (2/3)L(O., s). Find the best pure strategy. That
is, the pure strategy which minimizes this expected loss. Now re-
present the lines (1/3)L} 1- (2/3)L. == 1, (1/3)L} 1- (2/3)L. == 1.5, and
(1/3)L} 1- (2/3)L. == 2 on a graph. Suggest a graphical method of
locating the best among all strategies (pure and randomized). Is
this strategy pure or randomized?
Exercise 5.5. For each strategy s there is a maximum expected

loss which is the greater one of L(OHs) and L(O., s). Denote this
by max (L(O},s), L(O., s)). Find the minimax pure strategy, that
is, the pure strategy which minimizes max (L(OHs), L(O., s)). Now
represent the sets {(L}, L.) :max (LHL.) == 1}, {(L}, L2) : max(LHL.) ==
1.5}, and {(L}, L.) :max (LHL.) == 2} on a graph. Suggest a
graphical method of locating the minimax strategy among all
strategies. Is this strategy pure or randomized?

3. TWO STATES OF NATURE: CONVEX SETS AND LINES

We shall use Mr. Nelson's problem and the discussion of Section
2 to motivate our general treatment of the class of problems with
two possible states of nature. First we deal with pure strategies.
A strategy s is said to be pure or non-randomized if it assigns an
action to each of the possible observations. In other words, a pure
strategy is a function on the set of possible observations to the set
of possible actions. As was pointed out in Section 2, there are two
points of view in lookingat randomized strategies. For one of these
we first look at our observation and then use a random device
(depending on the observation) to decide which action to take. An
example given was to take a} or a. each with probability 1/2 if x} is
observed. If x. is observed, take a., and if X3 is observed, take a3•
For convenience we shall concentrate on the other point of view.
According to this, a mixed or randomized strategy s is a choice of
one of the set of pure strategies where the choice is made with a
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random device. Thus the above example could be regarded as a
choice of 86 or 816, each with probability 1/2.
Now one may ask about mixtures of randomized strategies. It

can be shown that random mixture8 of randomized 8trategie8 may
be regarded as randomized 8trategies. Exercise 5.6 illustrates this
point.

Exerci8e 5.6. Let 8 consist of selecting 81 with probability 1/2
and 8. with probability 1/2. Let 8' consist of selecting 81with proba-
bility 1/4 and 83 with probability 3/4. Let 8" consist of selecting 8

with probability 1/2 and 8'with probability 1/2. If 8" is used, what
are the probabilities of applying 81, 8., and 83?
Each strategy should be evaluated in terms of its consequences.

The relevant aspects of these consequences are measured by the
expected losses. Thus a strategy 8 is to be evaluated in terms of
the values of L(Ol' 8) and L(O., 8). It follows that it 8uffice8 to
represent a 8trategy 8 by a pmnt in the plane who8e coordinate8 are
L(0l> 8) and L(O., 8) re8pectively. It should be noted that several
strategies can be represented by the same point. For example, 89

is represented by the same point as the strategy which selects 86,

816, and 8.3with probabilities 6/27,20/27, and 1/27respectively. It is
interesting to note that, while 89 leads to action a3 if x. is observed,
each of 86, 815 and 8.3 leads to a. if x. is observed. Hence this random-
ized strategy and 89 are quite different in strategic content al-
though they have equivalent expected losses and are represented
by the same point. Let 80 and 81 be any two strategies and consider
the mixture 8 which consists of selecting 80 with probability 1 - w
and 81with probability w. The stategy 8 is represented by (L(Oh 8),
L(02' 8)), where

(5.1) L(Ol' 8) = (1 - w) L(Oh 80) + w L(Oh 81)

L(O •• 8) = (1 - w) L(O •• 80) + w L(02' 81),

We shall now discuss one of two important representations of
lines with a view to seeing that the point representing 8 is on the
line segment connecting the points representing 80 and 81, Suppose
(xo, Yo) and (Xl' Y1) are two points in the plane. Let (x, y) be another
point on the line through these points. Suppose that (x, y) is 1.7
times as far from (xo, Yo) as is (Xl> Y1)' (Figure 5.3.) We draw a
horizontal line through A = (xo, Yo) and vertical lines through B=
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(Xl' YI), and C = (x, y) which intersect the horizontal line at B' =
(x11 Yo)and C' = (x, Yo)' The triangles ABB' and ACC' are similar
and hence the lengths Ad, BB',and AB are proportional to AC',
CC', and AC respectively. That is to say

AC' CC' AC
"A"""n) = -= = -=.AB BB' AB

But AC' = x - xO, AB' = Xl - xo,"CC' = Y - Yo,BB' = YI- Yo,and
ACfAB = 1.7. Thus

X - Xo _ Y l- Yo- 1 7-------- .
Xl - Xo Yl- Yo

and
X = Xo+ 1.7(xl - xo)= (-0.7)xo + (1.7)xl
Y = Yo+ 1.7(Yl- Yo)= (-0.7)yo + (1.7)Yl'

B' C'

(x~, Yo) (x, Yo)

Figure 5.3. A diagram illustrating the derivation of Equation (5.2).

More generally, if (x, y) were W times as far from (xo, Yo) as is
(x11 Yl), then

(5.2) X = (1 - w)xo + wXl

Y = (1 - w)Yo + WY1'

The expressions for X and yare so similar that it is customary to
abbreviate these two equations. "Let uo, u11 and u represent the
points (xo, Yo), (x11 Yl), and (x, y). ,Wewrite
(5.3) U = (1 - w)uo + WU1'

Strictly speaking, U, ito, and itl are not numbers, and this equation
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is not an ordinary equation. We shall interpret it to mean that
each coordinate of u is obtained by adding (1 - w) times the
corresponding coordinate of Uo to w times the corresponding coordi-
nate of U1• In other words, we interpret this equation to mean the
same as Equations (5.2).
What happens to the point u as w varies? Referring to Figure

5.4, we note that, as w varies from 0 through positive values, u
moves from Uo in the direction of u1• At w = 1, it becomes Ul> and
as w exceeds 1, ii moves beyond u1• On the other hand, as w varies
from 0 through negative values, u moves from Uo in the direction
opposite ii1• The line through Uoand ii1 may be represented by

(5.4) {u: it = (1 - w)uo + wUl> W is a number}.

w=1
w=O.5 B

w=O
A

Figure 5.4. Points on a line. The line {u: WUo + (1- w)ud showing
points corresponding to particular values of w.

The line segment from Uo to u1 corresponds to the values of w
between 0 and 1 and is represented by

(5.5) {u:u=(1-w)uo+wU1,O::;;w::;;1}.

Notice that the numbers 1-wand w which multiply Uoand u1are
both non-negative and add up to one for u on the line segment. If
o ::;;w ::;;1, the expression (1 - w)xo + WX1 is called a weighted
average of Xo and Xl corresponding to the weights (1 - w) and w.
Similarly, if 0::;;w::;; 1, (1- w)uo +wU1 is called a weighted average
of Uo and u1• Physically speaking, it has the following interpreta-
tion. If a weight of w pounds is at ii1 and a weight of (1 - w)
pounds is at uo, the center of gravity of the pair of weights is at
(1 - w)iio + wu1• The ordinary average corresponds to the case
w = 1/2, where both points have equal weights. The closer w gets
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to one, the closer toul is the weighted average or center of gravity.
A convex set is a set of points which has the property that, if U

and ii are points of the set, the lin~ segment connecting u and v is
contained in the set. In other words, S is convex if, when u € S
(u is an element of S) and v € S, .then (1 - w)u + wv € S for all
w between 0 and 1.
The convex set generated by a set A is the smallest convex set which

contains A. Thus the convex set generated by three points uh u2,

ua is the triangle with these points ,at the vertices. (See Figure 5.5.)
i:

5

4

3
y

2 UI = (2,2)

ua = (6,1)

0
0 7

x

5

4

3
y

2 UI = (2,2)

Ua = (6,1)

7
x

Figure 5.5. Convex sets generated by 'ih. U2 and Ua, and by
Ul. ~, Ua. u{ and Us.

The notion of weighted average can beextended to three or more
quantities. Thus, WlXl + W72 + waxa + ... is a weighted average
of the numbers Xl> x., Xa, ••• if the Wi are non-negative numbers
adding up to 1. Similarly, WlUl + W2U2 + waua + ... is a weighted
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average of the points UI, U2, Us, ••• if the WI are non-negative
numbers adding up to 1. This expression is to be interpreted, as
previously, as the point (x, y), where

x = WIXI + W~2 + WsXs + .
Y = WIYI + W2Y2 + WsYs + .

The triangle is the set of weighted averages of UlJ U2, and ~.
Similarly, it is true that the smallest convex set containing the
points UlJ u•. "', Un is the set of weighted averages of these points.
(Again a weighted average has the physical interpretation of the
center of gravity of the system where a weight of WI pounds is put
at the point ut• The center of gravity gets close to ul if WI is close
to 1.) This set will be a polygon whose vertices are those points
among UlJ U2, ••• , Un which cannot be expressed as weighted aver-
ages of the others. (See Figure 5.5.) Not all convex sets are po-
lygonal. For example, a circle (with its interior) is a convex set.
It is the set generated by the points on the circumference.
Exercise 5.7. Represent in set notation the lines through:
(a) The points (2, 2) and (4, 4);
(b) The points (2, 2) and (6, 1);
(c) The points (6, 1) and (4,4).

Exercise 5.8. Plot the weighted averages of (2, 2), (4, 4), and
(6, 1) which give these three points the weights:

(a) 1/2, 1/2, and 0;
(b) 0.8, 0.1, and 0.1;
(c) 0.1,0.8, and 0.1;
(d) 1/3, 1/3, and 1/3.

Exercise 5.9. Represent each point of Exercise 5.8 as a weighted
average of (6, 1) and a point on the line connecting (2,2) and (4, 4).
Exercise 5.10. Express the point (4.4,2.4) as a weighted average

of the three points (6, 1), (2, 2), and (4, 4).
Exercise 5.11. Let S be a circle (circumference and interior).

Delete one point P. Is the remaining set convex if P is on the
circumference? If P is in the interior?
Exercise 5.12. Let S be a square (including its interior). Delete

all four vertices (corners). Is the remaining set convex?
Exercise 5.13. Any point of the convex set generated by A can

be expressed as the weighted average of at most three points of
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A. Sometimes less than three points are sufficient. Indicate how
many points are the most required for the following A.

(a) A consists of the single point (1, 1);
(b) A consists of the two points (1, 1), (2, 2);
(c) A consists of the three points (1, 1), (2, 2), (3, 3);
(d) A consists of the three points (2, 2), (4, 4), (6, 1);
(e) A consists of the circumference of a circle;
(f) A consists of the boundary of a square;
(g) A consists of the vertices (corners) of a square.

Exercise 5.14. Which of the following sets are convex?
(a) {(x, y): max (x, y) = I};
(b) {(x, y): max (x, y) ~ I};
(c) {(x, y): max (x, y) ~ I};
(d) {(x, y) : max (x, y) < I}.

Exercise 5.15. The notion of a convex set extends easily to three-
dimensional space. Thus a sphere with its interior is a convex set,
but a doughnut is not. Describe the convex set generated by a
doughnut. Describe the convex set generated by a coil spring.
Let us return to Equations (5.1). Since a probability is between

o and 1 and all numbers between 0 and 1 can be probabilities, it
follows that the point representing s is on the line segment connect-
ing the points representing So and Sl. Conversely, every point on
this line segment represents some strategy which is a mixture of
So and Sl. Since So and Sl can be any two strategies, it follows that
S, the set of points representing all possible strategies (pure and
randomized), is convex. In fact, S is the convex set generated by the
points representing the pure strategies.
We say that the strategy s dominates s* if L(OlJ s) ~ L(Ol' s*) and

L(O •• s) ~ L(O •• s*), but the strategies are not represented by the
same point. In this case the point representing s is either: (a) to
the left and below; or (b) directly below; or (c) directly to the left
of the point representing s*.
A strategy s is admissible if it is not dominated by any other

strategy (pure or randomized). Here we may recall that, although
s. would have been admissible among all pure strategies, it cannot
be considered admissible now that randomized strategies are availa-
ble. The class of admissible strategies corresponds to a portion of
the boundary of the convex set S.
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This portion of the boundary will be called the admi88ible part
of the boundary.
In Mr. Nelson's problem, no matter what criterion he will apply

in deciding on a strategy, it seems clear that he should eventually
take one of the admissible strategies. Suppose that he confines
his attention only to admissible strategies. This is a reasonable
notion and is often applicable. However, there are occasionally
somewhat pathological problems where there are no or very few
admissible strategies. For example, suppose that there were
available an infinite number of strategies 8" 8" ••• and

L(O" 81) = L(O •• 81) = 1
L(01' 82) = L(O •• 82) = 1{2
L(O" 83) = L(O •• 83) = 1{3

These strategies would be represented by the points in Figun
5.6. Then there is no admissible strategy. For no matter which
strategy is selected, there is a better one. The convex set represent-
ing all strategies including the mixed ones is the line segment from
(0, 0) to (1, 1) which does not contain the end point (0, 0). The
difficulty arises from the fact that although one can get strategies
the expected losses of which are arbitrarily close to (0,0), one
cannot achieve (0, 0). This difficulty is troublesome theoretically
but not very serious otherwise since we can get arbitrarily close.

1.00

0.75~
'"
~
o.l 0.50
II

S
0.25

Figure 5.6. Losses for a special example with
infinitely many strategies.
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In problems where there are only a finite number of pure
strategies, the convex set of interest is the smallest convex set
containing the points corresponding to the pure strategies. This
set will contain its boundary points, and the above-mentioned
difficulty will not arise. In fact, we shall assume hereafter that,
for our problems, the set representing the expected losses of our
strategies contains its boundary points.
In summary, we discussed four important concepts in this sec-

tion. First, a straight line through Uo and u1may be represented in
set notation as {u : U = (1 - w)uo + wUh W is a number}. Second,
a convex set has the property that the line segment connecting
two points of the set is in the set. Third, the class of all strategies
may be represented by the convex set S generated by the points
representing the pure strategies. Finally, the class of admissible
strategies is represented by part of the boundary of S.
Exercise 5.16. Is it always true that a mixture of two admissible

strategies is admissible? Illustrate with a diagram.
Exercise 5.17. In the rain problem, the strategy S17 is inadmis-

sible. Are there mixtures of S6 and S18 which dominate S17? If so,
specify one.
Exercise 5.18. When Mr. Smith arrives home, Mrs. Smith tells

him that a dozen cookies disappeared from the cookie jar. Mr.
Smith feels that, if his son John has been naughty and has eaten
the cookies without permission he should be punished. His loss of
utility table is given as follows.

U1 (Punish) U2 (Do not Punish)

61 (Naughty) I 2

62 (Innocent) 4 0

Since other children had access to the cookie jar, Mr. Smith decides
to base his action on the outcome of the experiment which consists
of observing whether his son eats heartily at supper (Zl)' eats
moderately at supper (Z.), or barely eats (Z3). His estimate of the
probability distribution of the data is given as follows.

I Zl Z. Z3

61

I
0.1 0.4 0.5

6. 0.2 0.6 0.2
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List and evaluate all pure strategies. Represent them graphical-
ly. Indicate the class of all admissible strategies. (Students are
advised to keep a copy of the expected losses since this problem is
referred to in the exercises of later sections.)

4. TWO STATES OF NATURE: BAYES STRATEGIES
AND SUPPORTING LINES

Suppose that Mr. Nelson is informed that in North Phiggins it
rains on the average two days out of three. In other words, the
state 01 has a probability 1{3while O2 has a probability 2{3. When
such -probabilities can be attached to the states of nature prior to
experimentation, they are called a priori probabilities. Suppose
strategy S6 were applied. About 1{3of the time the expected loss
L would be 0.7 and 2{3of the time it would be 2.9. This would lead
to an expected L of

1 2 6.52"(S6) =-(0.7) + -(2.9) =-.
3 3 3

One may evaluate 2"(s) for all strategies s and take a strategy
which minimizes this weighted average of expected losses. Such
a strategy is called a Bayes strategy corresponding to the a
priori probabilities 1{3and 2{3. (Bayes was an English mathema-
tician and clergyman of the 18th century.) In this example the
Bayes strategy is S18' In general a Bayes strategy corresponding to
the a priori probalJilities 1- w and w is a strategy swhich minimizes
(5.6) 2"(s) = (1 - w) L(011 s) + w L(O•• s).

Every strategy is represented by a point of the convex set S.
For every such point (L1, L2), there is a corresponding value of
(1 - w)L1 + wL2• To find the Bayes strategies, we must locate the
points of S which minimize (1 - w)L1 + wL2• We propose to show
that the Bayes strategies can be located by shifting an appropriate
line parallel to itself until it touches S. To do so, we shall study a
second important representation of a line.
Refer to Figure 5.3. We seek an expression relating the co-

ordinates x and y of a point C on the line which passes through the
given points A and B. (The coordinates of those given points are
(xo, Yo) and (x11 Y1) respectively.) In the figure we note that the tri-
angles ABB' and ACC' are similar and therefore the lengths BE'
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and AB' are proportional to the lengths CC' and AC'. That is to
say

or
Yl - Yo = Y - Yo.
Xl - Xo X - Xo

This equation relating the coordinates X and Y can be put in more
convenient form by multiplying both sides by (Xl - xo) (X - xo).
This gives

and thus also

X(YI - Yo) + y(xo - Xl) = XOYI - YoXl"

If we now let a denote (Yl - Yo), b denote (xo - Xl)' and c denote
(XOYI - YoXl)' we may write the relation above as

(5.7) ax + by = c.
This is an equation which relates the coordinates X and Y of

any point (such as C) on the line through A = (xo, Yo) and B=(x1, Yl).
(It should be noted that, because (xo, Yo) and (xH Yl) are different
points, at least one of the numbers a and b must be different from
zero.) Conversely, it is true that, if X and yare such that ax+by=c,
then (x, y) is on the line. The above equation is our second impor-
tant representation of the line. More precisely, the points on the
line may be represented by

{(x, y): ax + by = c}.

Furthermore, it is not difficult to prove that, as long as a and ba1.e
any two numbers which are not both zero, the set of (x, y) for which
ax + by = c is a line.
Consider the function f defined for all points (x, y) in the plane

by

f(x, y) = 2x + 3y.
We have shown that the set of points for which f(x, y) has the

value 5 is a line (Figure 5.7). Consider the value off as a point
moves up from the line. Then x stays fixed, but Y increases, and
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f(x, y) increases. Thus 2x + 3y > 5 above the line and similarly,
2x + 3y < 5 below the line. In general, if a and b are not both zero,
ax + by = c rep1'esents a line, and ax + by > c on one side of the
line and ax + by < c on the other side. Moreover, since the points
on the line 2x + 3y = 6 lie above the line 2x + 3y = 5, these lines
never intersect and must be parallel. In general, increasing c has
the effect of moving the line ax + by = c parallel to itself.

2.5

x

Figure 5.7. Some parallel lines.

The above statement indicates that the coefficients a, b, and c
have certain relations to the line represented by ax + by = c.
Another such relation is observed when we note that, if (x, y) is
such that 2x + 3y = 5, then 4x + 6y = 10. In other words, if a,
b, and c are doubled, the line is unaltered. More generally if a, b,
and c are all multiplied by the same nonzero number, the line is
unaltered. 1

Two very special cases arise when a is zero and when b is zero.
In the first case, the line is represented by the equation by = c and
is clearly a horizontal line c/b units above the horizontal axis. In
the second case, the line is represented by ax = c and is clearly a
vertical line.
Suppose now that the line is not vertical, that is to say b * O.

Then for points on the line
1 If a, b, and ()were multiplied by zero, we would have the equation 0 = 0 which

is true for all (x, y) and not only for the line.
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by=-ax+c
-a cy=--x+-.

b b
Let

-am=--
b

and
ce=-.
b

Then

(5.8) y = mx + e

is a slightly modified version of the above representation which
applies for nonvertical lines. We may regard the Equation (5.8)
as one which represents a functionfwheref(x) = mx + e.
What more can be said about the numbers a, b, c, m and e, which

are called the coefficients for the line? Suppose a and b have dif-
ferent signs. That is, suppose a is negative and b is positive, or
vice versa. Then m = -alb is positive. But if m is positive, an
increase in x will lead to an increase in y. Similarly, if a and b
have the same sign, m = - alb is negative and an increase in x
leads to a decrease in y ; see Figure 5.8. Notice that as m increases
from one positive value to another, the line rises more steeply. For
this reason, m is sometimes called the slope of the line. Finally, if

35
30

25
20

5

o
-5

02345678
x

Figure 5.8. Graphs of several straight lines.
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x = 0, y = e. Hence e represents the height of the point where the
line crosses the vertical axis.
Suppose now that m is kept fixed and e is changed. Then the

line is changed to a new line which is parallel to the old line. This
is, of course, related to the fact that, if a and b are fixed but c is
changed, the line shifts to a parallel one. Hence by changing c or
e, we ~an shift the line parallel to itself as far as we wish.

Exercise 5.19. Draw the lines given by the following equations:
(a) y = 3x - 2 (d) y = - 2x + 3
(b) y = 3x + 1 (e) y = 2
(c) y = - 2x + 1 (f) x = 5

Exercise 5.20 Draw the lines given by the following equations:
(a) 2x + y = 4 (e) 2x - y = 4
(b) 2x + y = 6 (f) 2x - 2y = 6
(c) 2x + y = 8 (g) - x - 2y = 4
(d) 4x + 2y = 8 (h) - x - 2y = 6

*Exercise 5.21. The sum of a and b in the line 2x + 3y = 5 is 5.
(a) Change a, b, and c to a', b', and c' so as to leave the line

unaltered but so that a' + b' = 1.
(b) Do the same for - 2x - 5y = 3 and graph the line.
(c) Do the same for 3x - y = 1 and graph the line.
(d) Why cannot the same be done for x - y = I?

Exercise 5.22. Represent each of the above lines in the form
y = mx+ e.

Exercise 5.23. For each of the lines of Exercise 5.21 answer the
following questions:

(a) Let (x, y) be a point on the line and (x, y*) a point direct-
ly above it. Is ax + by greater or less than ax + by*?

(b) Is a'x + b'y greater than or less than a'x + b'y*?
Exercise 5.24. Draw seven lines through the following seven

pairs of points: (2,0) and (0,2); (2,0) and (0, 5); (4,0) and (0, 10);
(4, 0) and (0, 15); (0, 15) and (15, 0); (5, 0) and (5, 5); (0, 3) and
(3, 3). Each line corresponds to an equation wx + (1 - w)y = c.

(a) Identify two pairs of these lines having commonvalues of
w.

(b) Identify a line for which w = o.
(c) Identify a line for which w = 1.
(d) Identify a line for which c = 1.
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(e) Find the equation of the line through (4, 0) and (0, 10).
(f) Which of the above lines is parallel to the line 15x+4y=3?

A line is said to be a supporting line of a set 8 at the boundary
point u if u is a boundary point of 8 and (1) the line pa8sesthrough
'it and (2) 8 is ccnnpletely on one side of the line (8 may touch the
line).

Figure 5.9. Some sets and supporting lines.

Figure 5.10. Separating lines for convex sets.

A set 8 is said to be bounded if it can be completely enclosed in
a sufficiently large circle. Thus a triangle is bounded. Onthe other
hand, the set of points on a parabola is not. A line segment is
bounded but a line is not.
If 8 is a bounded set and L is a line, it is possible gradually to

shift the line parallel to itself until it becomes a supporting line at
some boundary point or points of 8. See Figure 5.9. A striking
property of convex sets is that given any boundary point it of a convex
set S, there is a supporting line of 8 at U. In Figure 5.9 this pro-
perty is illustrated for two convex sets and, for a third nonconvex
set, it is clear that it fails (at the point Q, for instance). Note that
for 81 each boundary point has only one possible supporting line.
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On S., there are several points where the boundary is not smooth,
and where several supporting lines may be drawn. Another strik-
ing property of convex sets, illustrated in Figure 5.10 is the fol-
lowing. If two convex sets have no points in comrrwn a line can be
drawn separating them in the sense that all points of one set lie on
one side of the line and all points of the other set lie on the other
side of the line.
The definition of a supporting line can be interpreted algebraical-

ly. Suppose that the line L = {(x, y) : ax + by = c} supports S at
170• Since S is on one side of the line, we have either

(5.9)

or
(5.9a)

ax+by~c

ax+by::;;c

for all (x, y) E S

for all (x, y) E S,

and since 170 is on the line, we have

(5.9b)

The above properties of convex sets and their algebraic interpre-
tation have special relevance for the problems of classifying admis-
sible strategies and locating Bayes solutions graphically. Let So be
an admissible strategy represented by a point uo. Then no point

5

4

0.3L1 + 0.1£2 = 1.5
.....J

0.3L1 +0.7L2 = I.....
2 3 4 5
L1 = L(81,5)

Figure 5.11. Convex set S representing all strategies for some
problem. 80 is an admissible strategy represented by uo.
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of S lies in the convex set T of points which lie both below and to
the left of uo• (In Figure 5.11, T is the interior of the shaded region
below and to the left of uo• Although Uo is on the boundary of T
it is not a point of T.) Clearly any line separating Sand T must
go through Uo and, hence, is a supporting line of Sand Tat uo•
Since it supports Tat uo, it must either (1) have a negative slope,
(2) be vertical, or (3) be horizontaJ.1 In none of these cases do a
and b have different signs. Thus their sum a + b is not zero and
has the same sign as a and b. We can divide the coefficients by
a + b and represent the line by {(LI, L.): a'LI + b'L. = c'} where
a' = a/(a + b) and b' = b/(a + b) are both non-negative numbers
adding up to one. Then we can write a' = 1- 10and b' = 10where
1 - 10 and 10may be regarded as weights between 0 and 1. Thus,
for any admissible strategy So represented by uo, there is a pair of
weights 1- 10 and 10 so that (1- 1O)LI+ 1OL.= c' supports S at uo•
Furthermore, since T is below or to the left of the line, S is above
or to the right of the line, hence, (1 - 1O)LI+ 1OL. ~ c' for all points
of S, and (1 - 1O)LI + 1OL.= c' for uo• But this means that So is
the Bayes strategy corresponding to the a priori probabilities 1-10
and 1o. In summary, every admissible strategy is a Bayes strategy
for some a priori probabilities 1- 10and 1o. This fundamental clas-
sification of admissible strategies derives mainly from the fact that
two convex sets with no points in common can be separated by a
line.
A partial converse is also true. If 1- 10 and 10are positive a

priori probabilities, the corresponding Bayes strategies are admis-
sible. This is intuitively obvious because a strategy cannot be best
on the average and worse than another for all states of nature.
The last sentence is a slight exaggeration since a dominated strategy
need not be worse than another for all states of nature. It could
be worse for only one state of nature and equal for all others. We
can gain some insight concerning the above converse by interpret-
ing the Bayes strategy geometrically. For a strategy So represented
by Uo to be Bayes, Uo must be a point of S minimizing (1 - 1O)LI +
1OL.. To find such Bayes strategies, we draw a line (1 - 1O)LI +
1OL. = c below S. We increase c, thereby moving this line with
negative slope upward parallel to itself until it touches S (see
1 The truth of this can be seen by considering the slopes of those lines which can

"pivot" on the corner of T; no such line can have positive slope.
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2.50.5
o
o
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1.0
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2.5

3.0

1.0 1.5 2.0
L1 = L(8I,5)

Figure 5.12. Graphic representation of a Bayes strategy.

Figure 5.12). The points where the line (1 - w)L1 + wL, = c sup-
ports S (from below) are the Bayes strategies corresponding to the a
priori probabilities 1 - wand w. Since all points of S are on or
above the line, and all points which dominate a point of support
are below the line, no point of S can dominate a point of support.
This means that no strategy can dominate one of these Bayes
strategies, i.e., each Bayes strategy corresponding to positive a
priori probabilities is admissible.
What happens when one of the a priori probabilities is zero?

Supposew = O. Then the Bayes strategies minimize
(1 - w)L(OI1 s) + WL(02' s) = L(OI1 s)

and are represented graphically by the points at which a vertical
line will support S (from the left). If there are several such points
of support, they lie on a vertical line and only the lowest represents
an admissible strategy. Statistically this means that, if we knew
O2 were impossible and 01 were the state of nature, we would be
willing to accept any strategy which minimizes L(OI1 s) no matter
how large L(0218). Thus we would not mind such inadmissible
strategies in this degenerate case. Similarly if w = 1, Bayes
strategies minimize L(02' 8) and are represented by points on the
horizontal line of support (from below).
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In Mr. Nelson's problem, it would be very reasonable for someone
who was well acquainted with the frequency of rain in North Phig-
gins to apply the corresponding Bayes strategy. But in many
problems, the state of of nature cannot be regarded as random,
and it does not make sense to talk of the probability or frequency
with which a certain state 0 occurs. For example, suppose that
o is the velocity of light. Presumably 0 is some fixed number
which is estimated by various experiments the outcomes of which
have probability distributions depending on o. It would be un-
reasonable to treat the speed of light as random. Even so it
makes sense to consider Bayes strategies. The reason for this
is that, first, the class of all Bayes strategies (corresponding to
all a priori probabilities) contains the class of admissible strategies
and, therefore, one may reasonably restrict one's attention to the
class of Bayes strategies. Second, the Bayes strategies will be
shown to be relatively easy to obtain. Thus, by studying Bayes
strategies, the statistician can often reduce his problem to
choosing from among a relatively small class of easily obtainable
"reasonable" strategies.
The fact that all admissible strategies are Bayes, and almost vice

versa, was made clear from purely graphical considerations. These
yield some additional results also. For example, at least one of the
points where a supporting line touches a convex set is not a weighted
average of other points. This means that at least one of the Bayes
strategies corresponding to the a priori probabilities (1 - w, w) is
a pure strategy. In fact, if there are several non-equivalent Bayes
strategies corresponding to (1 - w, w), they consist of certain pure
strategies and their mixtures. In the rain example, 815 and 818 and
all their mixtures are the Bayes strategies corresponding to the a
priori probabilities 6/16 and 10/16. This result implies that so long
as we would be satisfied with any Bayes strategy corresponding to
the a priori probabilities 1 - wand w, we need not bother with the
randomized strategies. Since there are many problems with only
a finite number of pure strategies but with infinitely many ran-
domized strategies, this result is sometimescomputationally helpful
in that we may focus our computations on the pure strategies. In
any case, it is pleasing to some philosophically minded statisticians
who object to using irrelevant data, as they must if they are to
use randomized strategies.
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Graphically we may note that, as w increases, the supporting
line (1 - w)L1 + wL, = c tends to become horizontal. The cor-
responding boundary point moves down and to the right. Hence,
as w approaches 1, the corresponding Bayes strategy tends to
minimize L«()" s) and tends to disregard L«(}iJ s). This result is quite
reasonable for, if one were almost certain that (),were the state of
nature, one would desire to minimize L«(}2' s).
Exercise 5.25. Draw the lines

(a) 0.9x + O.ly = 2 (d) 0.3x + 0.7y = 2
(b) 0.7x + 0.3y = 2 (e) O.lx + 0.9y = 2
(c) 0.5x + 0.5y = 2 (f) 0.5x + 0.5y = 4

Exercise 5.26. Represent the line through the points (1.8, 2.2)
and (1.3, 2.5) in the related forms y = mx + e and (1 - w)x +
wy = c. Hint: 2.2 = 108m + e and 2.5 = 103m + e.
Exercise 5.27. Mr. Nelson is reliably informed that it rains 40%

of the time in North Phiggins. Locate the appropriate Bayes
strategy graphically. The weather meter reads "dubious." What
action should Mr. Nelson take?
Exercise 5.28. Find the Bayes strategy for Mr. Smith's problem

of Exercise 5.18 where the a priori probabilities of (}l and ()2 are
0.5 and 0.5.
Exercise 5.29. Suppose that Mr. Nelson was informed that in

North Phiggins local ordinances forbade the wearing of a raincoat
except if worn with boots, umbrella, and rain hat. The effect of
this is to reduce his choice of actions to only two - a1 and ~. This
also reduces him to only eight pure strategies. List these strategies
and the corresponding expected losses. Represent them graphi-
cally. Find (both graphically and by direct computation) the Bayes
strategies corresponding to a priori probabilities w = 0.1, 0.4, 0.8.
In the following three exercises, S is convex set representing all

possible strategies in a statistical problem.
Exercise 5.30. Can a line with a positive slope support S at an

admissible strategy? Illustrate with a drawing.
Exercise 5.31. Can S lie below a line with negative slope which

supports S at an admissible strategy? Illustrate with a drawing.
Exercise 5.32. Let 1 - wand w be a priori probabilities. Prove

that the abscissa of the point where the corresponding supporting
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line intersects the line L1 = L2 is the minimized value of (1- w)L1 +
wL2•

Exercise 5.33. Indicate two convex sets which have one point
in common and cannot be separated by a straight line.
Exercise 5.34. Indicate a convex set which cannot be supported

by a vertical line. Hint: This set must be unbounded.

5. TWO STATES OF NATURE: MINIMAX STRATEGIES

Mr. Nelson was leaving his room wearing his raincoat when in
came an old friend of his, Mr. Lancaster, who, also being aware of
the possibility of rainy days, cautioned Mr. Nelson to guard against
the vagaries of the weather. At first he proposed that Mr. Nelson
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Figure 5.13. Graphic representation of the minimax expected
loss strategy for Mr. Nelson's rain problem.
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assume that the weather was bound to be bad and just wear his
complete rain outfit. Then his loss would be only two. But Mr.
Nelson, falling into the spirit of pessimism, replied that, surely if
he wore his complete outfit, the sun would shine and his embar-
rassment would contribute to a loss of three. If, however, he
selected strategy SIB, his expected loss would be no more than 2.2,
no matter which of the {j's represented the state of nature. Mr.
Lancaster who had never heard of statistics and strategies was
quite enthused by this argument. Finally he extended it as follows.
He claimed that, whatever strategy was applied, the {j which turned
up would undoubtedly be the one which would would maximize the
loss. Then clearly one should apply that strategy for which the
maximum losswas as small as possible. In this way Mr. Lancaster
formulated the principle of applying the criterion of minimizing
the maximum expected loss, which we shall abbreviate as minimax
expected loss.
Referring to Figure 5.13, they decided to tackle the problem

graphically. The set of points (LI, L.) for which the larger of the
two coordinates is one is designated by {(LI, L.) :max (LI,L,) = 1}
and is the set of points on two half-lines. One is the horizontal
half-line for which L. = 1 and LI < 1. The other is the vertical
half-line for which LI =1and L.< 1. The combined figure resembles
a rather blunt wedge with an apex at (1, 1). The set of points for
which max (LI, L.) = c is similar except that its vertex is at
(c, c). As c increases, this wedge moves upward and to the right.
The points where the wedge first meets S is the point corresponding
to the minimax expected loss strategy. In our example this point
has coordinates (30/14, 30/14) and corresponds to mixing SIB and S27

with probabilities 10/14and 4/14 respectively.
It is no accident that for the minimax strategy the two expected

losses L({jH s) and L({j., s) were equal. As long as the apex of the
wedge is the point which touches the set S, this will be the case.
When this is known to be the case, it often helps in the computa-
tional task of finding the minimax strategy. If the apex is not the
point or not the only point where the wedge first touches S, then
either the horizontal part or the vertical part of the wedge touches
S, and this part is then part of a supporting line to S at the
minimax point; see Figure 5.14 for examples. This happens if S
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Minimax points
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Figure 5.14. Minimax points for various convex sets.

lies completely below or completely above the line L1 = L•. When
this occurs, the minimax strategies coincide with some of the
Bayes strategies for the a priori probabilities (1, 0) or (0, 1).
Here, again, we may have inadmissible strategies which minimize
the maximum expected loss.
Often the minimax expected loss will be a mixed strategy. This

is the case in Mr. Nelson's problem. Both he and Mr. Lancaster
were pleased with this criterion. Mr. Lancaster had succeeded in
minimizing the effect of nature's apparent dislike for him and Mr.
Nelson had the opportunity to justify the use of a randomized
strategy. The authors are not especially impressed by either point
of view. One attitude which has been expressed to justify the use
of this criterion is that, in many examples, the minimax expected
loss strategy does guarantee a rather small expected loss no matter
what the state of nature. In that case, there is not much to lose
in applying this criterion.
*Exercise 5.35. If Mr. Nelson applies the minimax expected loss
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strategy and observes a reading of "dubious," what action does he
take? Apply the table of random digits if necessary.
Exercise 5.36. In a decision making problem, there are four pure

strategies represented by (0.5, 3.0), (1.0, 1.5), (2.0, 1.0), and (3.0,
(l.8). Graph the set S corresponding to all strategies. Find the
Bayes strategy corresponding to the a priori probabilities 1/3 and
2/3. Locate the minimax expected loss strategy graphically.
Exercise 5.37. Locate the minimax expected loss strategy

graphically for Mr. Smith's problem of Exercise 5.18.
Exercise 5.38. Locate the minimax expected loss strategy

graphically for Mr. Nelson's problem of Exercise 5.29.
Exercise 5.39. Compute the minimax expected loss and the cor-

responding strategy for Mr. Nelson's problem of Exercise 5.29.
Hint: For the minimax strategy £1 = £.. The solution can be
obtained by expressing £1 and £. as mixtures of the losses for the
two strategies whose mixture is minimax.

6. TWO STATES OF NATURE: REGRET

Just as Nelson and Lancaster were leaving the room wearing
their complete rain outfits, in came Mr. Crump. He was much
impressed with their explanation of minimax expected loss but,
after some thought, he argued for a modification. His theory was
that, if it rains, the loss in utility is bound to be at least two. If
it rains and the loss were three, because in their ignorance they
wore only raincoats, then their regret due to not having guessed 8
correctly would be only one. He claimed that they should consider
the regrets, and possibly minimax the expected regret which we
label risk. While Mr. Lancaster could not agree with him, Mr.
Nelson was quite interested and decided to evaluate the minimax
risk strategy. The minimum losses attainable under 81 and 8.
respectively are 0 and 2. Hence the regrets, r(8, a), are obtained
by subtracting 0 and 2 from l(81, a) and l(fJ., a) respectively, as in
Table 5.6. That the risks or average regrets may be similarly
obtained from the average losses can be seen as follows. A strategy
sleads to the random action A with regret r(8, A) = l(8, A) - 2.
Taking expectations of both sides, we have R(8, s) = £(8, s) - 2,
where R is the risk. Thus, to obtain the risks, we subtract the
minimum losses 0 and 2 from the expected losses £(8u s) and £(fJ •• s)
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TABLE 5.6

Loss AND REGRET; FOR MR. NELSON'"

Loss = l(8, a) Regret = r(8, a)

5 3

o 1

a3 Min. Loss
'i

3 0

2 2

o
3 1

3

o

L(8,8)

* r(8, a) = l(8, a) - minimum loss for th~t value of 8.
I

TABLE 5.7
i

EXPECTED Loss L AND EXPECTED REGRET OR RISK R FOR MR.
NELSON'S PU~E STRATEGIES

I

Strategy, 81
State of
Nature, 8 81 8, 83 8, 85 86 87 88 89

81 1 0.00 0.15 0.45 ,P-25 0.40 0.70 0.75 0.90 1.20
8. 5.004.003.50'4.403.402.904.103.102.60

I 810 811 81' ,: 813 814 815 816 8]7 818

',0.600.75 1.05;,!,O.851.00 1.30 1.35 1.50 1.80
4.60 3.60 3.10~.00 3.00 2.50 3.70 2.70 2.20

I 819 8'0 821 'i 8., 8.3 8., 8.5 826 8.7

1

1.801.95 2.25'?05 2.20 2.50 2.55 2.70 3.00
4.403.402.90,3.802.802.303.502.502.00

R(8,8)

I 81 8. 83 8, 85 86 '~7 88 89 810 811 812 813
Jl

81 10.000.150.450.250.400.700,,;.750.901.200.600.751.050.85
8. 3.002.001.502.40 1.400.902:.10 1.100.602.601.601.10 2.00

I 814 815 816 817 818 819 '8.0 821 8.. 823 8., 8.5 826 8.7

81 11.001.30 1.35 1.50 1.80 1.80 1,:,,952.252.052.202.502.552.703.00
82 1.000.50 1.700.700.202.401:400.901.800.800.30 1.500.500.00

respectively; see Table 5.7. The,risks may be represented graph-
ically by moving S vertically until the horizontal axis is a support-
ing line, and horizontally until th~ vertical axis is a supporting line;
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Figure 5.15. Graphical representation of the minimax risk strategy
in Mr. Nelson's rain problem.

see Figure 5.15. (In our our example, S need not be moved hori-
zontally.) Then the wedge method is applied to obtain the minimax
risk strategy. This strategy has risks (0.82, 0.82), expected losses
(0.82, 2.82), and mixes strategies S6 and 815 with probabilities 0.8
and 0.2 respectively. Mr. Nelson is rather convinced when Mr.
Crump illustrates (see Exercise 5.40) how slight differences in a
catastrophic state will almost completely control the minimax ex-
pected loss strategy.
Exercise 5.40. Compute the minimax expected loss strategy and

the minimax risk strategy in the following example with two states
of nature and two pure strategies. (You should represent the
problem graphically.)

Expected Losses

91 o
100

99
99

Exercise 5.41. Just as Messrs. Nelson, Lancaster, and Crump
were about to reach a decision, they were joined by Mr. Montgomery
who had a different point of view. His policy, it turned out, was
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to assume that things would turn out well and, accordingly, he
selected the strategy which minimized the minimum expected loss.
Compute the minimin expected loss and minimin risk strategies in
Mr. Nelson's problem.
Exercise 5.42. When Mr. Montgomery's proposal was disre-

garded, he proposed the following problem with two states of
nature and four pure strategies.

Expected Losses

200

o
168

48

120 0

120 300

Clearly S3 is the minimax risk strategy. However, suppose s~
consists of always taking a certain action which is found to be il-
legal. Suppose also that Sll s" and S3 never use this action. Then
what is the minimax regret strategy for the problem remaining
after s. is discarded? Does it make sense to have a "criterion
of optimality" which selects S3 when s, is allowed but which re-
jects S3 when the "undesirable" and irrelevant strategy s. is no
longer allowed?
Exercise 5.48. Locate the minimax risk strategy graphically for

Mr. Smith's problem of Exercise 5.18.
Exercise 5.44. Locate the minimax risk strategy graphically for

Mr. Nelson's problem of Exercise 5.29.
Although many statisticians do not approve of the minimax

risk criterion, most of them are willing to admit that for an
intelligent choiceof strategies it sufficesto consider only the risks.
(See Appendix E6 for a discussion of this issue.) They may merely
disagree on how the risks should be used.
The Bayes strategy corresponding to the a priori probabilities

1 - wand w minimizes the weighted average of expected losses
2"(s) = (1 - w) £(011 8) + w £(02, s). Suppose that the risks are
obtained by subtracting the minimum losses m(O,) and m(02) from
l(Oll a) and l(02' a). Then £(011 8) = R(Oll 8) + m(O,), £(0 •• 8) =
R(02' 8) + m(O,), and
2"(8) = [(1 - w) R(Oll 8) + w R(O•• 8)] + [(1 - w) m(O,) + w m(02)] •
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The second part of the right-hand side does not involve s. Hence,
the Bayes strategy minimizes the weighted average of risks,

~(s) = (1 - w) R(OlJ s) + w R(O •• s).
Thus minimizing the weighted average of the risks yields the

same strategies as minimizing the weighted average of expected

4.5 •

2.00.5
oo 1.5

Rj

Figure 5.16. The set S of expected loss points (Ll• L2) =
[L(8h 8). L(82. 8)] and the set S* of risk points (Rr, R2) =
[R(8l. 8). R(s2. 8)] corresponding to all strategies in Mr.

Nelson's rain problem.

0.5

losses. Geometrically this means that, if the set of expected losses
S is moved into S": by shifting it till it touches both axes, the points
where Sand S* touch a supporting line with direction d€termined
by 1 - w andw are points corresponding to the same strategies.
(See Figure 5.16.) It is customary for statisticians to compute
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automatically regrets instead of losses and not even to bother with
expected losses.

7. LINES, PLANES, AND CONVEX SETS IN HIGHER DIMENSIONS

The theory of lines and convex sets in the plane proved helpful
in discussing and understanding the problem of decisionmaking in
the case of two states of nature. In the contractor problem,
Example 1.1, there were three states of nature. Then correspond-
ing to any strategy 8, there were three relevant expected losses
£(81, 8), £(8•• 8), and £(83, 8) which can be collected as one triple of
numbers

(5.10) £(8) = (£(81P 8), £(8•• 8), £(83, 8».

Just as a pair of numbers (:1:, y) can be represented by a point in
the plane, we can represent a triple (:1:, y, z) by a point in three-
dimensional space. The coordinates represent distances in each of
three mutually perpendicular directions. The lines through the
origin in these directions may be called the:l:, y, and z axes. Because
of the correspondence between triples and points in space, theorems
in geometry can be translated into certain algebraic relations. Very
often these theorems are proved by first establishing the algebraic
relations. One could proceed purely algebraically but, generally,
the geometer is motivated by the intuitions which are developed
by looking or thinking in terms of pictures.
For a problem which involves four or more states of nature, one

must consider quartets or larger groups of numbers. Here, again,
many algebraic relations can be considered to have geometric mean-
ing even though it is difficult to visualize four-dimensional space.
As far as statistics is concerned, the algebraic relations are of
fundamental importance, but these relations are often thought of
because of ordinary visualizations in the plane and space. We shall
indicate properties of lines, planes, and convex sets in higher
dimensions. One may visualize their counterparts in two or three
dimensions to help one's intuition, but from our point of view these
properties are merely algebraic relations. For the sake of con-
venience we shall confine ourselves to illustrations in three dimen-
sions, but all our statements will have meaning and be true in k
dimensions for k ~ 3.
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In the plane we discussed the fact that a line through two points
(xo, Yo)and (Xl> YI) could be represented by the set of points (x, y)
for which

x = (1 - w)xo + wX1

Y = (1 - w)Yo+ WYI'

If we represented the points (xo, Yo), (Xl> YI)' and (x, y) by uo, Ul>

and U, we could write

u = (1 - w)uo + WUI"

In space (three-dimensional) we have points represented by u =
(x, Y, z); see Figure 5.17.

Figure 5.17. Points in space.

The argument which applied to give the representation of a line
in the plane (Figure 5.3) can easily be extended to give us the
following, The line through the two points Uo= (xo, Yo, zo) and u1 =
(Xl> Yl> Zl) is represented by

(5.11) {u: U = (1 - w)uo + wu1, W is a number}

where (1 - w)uo + wUI is to be interpreted as before as the point
(x, Y, z) each coordinate of which is obtained by adding (1 - w)
times the corresponding coordinate of Uoto W times the correspond-
ing coordinate of u1' In other words,

x = (1 - w)xo + wXI
Y = (1 - w)Yo + WYI
z = (1 - w)zo + WZI"
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Similarly, the line segment connecting Uo and ul is the set
(5.12) {U: U = (1 - w)uo + WUH 0:::;; W :::;; 1}.

Once more u is W times as far from Uo as is Ul' If WII W••• '., Wm

are m non-negative numbers adding up to one, the point

(5.13)

is a weighted average of the points Ul' U••• '., 'um• A convex set is
defined, as before, as a set S which contains the line segment con-
necting u and v if it contains the points U and v. The smallest
convex set containing a set A is called the convex set generated by
A. The convex set generated by m points Ul' U•• ' •• , um is the
set of weighted averages of these points. In two dimensions, the
convex set generated by Amay be thought of as the region enclosed
in a rubber band set down to embrace all of A. Similarly the convex
set generated by a three-dimensional set A may be visualized as
the region contained within an elastic wrapper around A. It is a
fact that, for every point U in the convex set generated by A, there
can be found four points of A of which U is a weighted average.
(In k dimensions, four would be replaced by k + 1. The reader
may illustrate this fact for himself for k = 2.) The convex set
generated by a finite number of points is a polyhedron, the vertices
of which are some (or all) of the original points.
In three-dimensional space, a plane is represented by a linear

equation. That is to say, corresponding to any plane P, there are
four numbers a, b, c, d such that a, b, and c are not all zero and

(5.14) P = {(x, y, z): ax + by + cz = d}.

In k dimensions a k - 1 dimensional "hyperplane" would be given
by

(5.14a) P = {(XII X••••• , xk) : blxl + b.x. + ... + bkxk = d}

where bl, b., ' •• , bk are not all zero. In two dimensions, the
k - 1 dimensional hyperplane is a line. This is why the line
has two rather distinct representations in the plane. One
corresponds to the line in k dimensions and the other to the k - 1
dimensional hyperplane in k dimensions. Multiplying the coef-
ficients a, b, c, and d by a given nonzero number does not affect
the plane. Changing d shifts the plane parallel to itself. If a, b,
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and c are positive, an increase in d shifts the plane in the direction
in which x, y, and z increase. If a = 0, the plane is parallel to the
x-axis. If a and b are zero, the plane parallels the x- and y-axes. In
Figure 5.17 it would be a horizontal plane. Suppose the coefficients
a, b, and c are non-negative. Since they do not all vanish, we can
divide by a + b + c, which is positive. Thereby we obtain an equa-
tion for the plane in which the coefficients of x, y, z are non-nega-
tive and add up to one. Then we could express the plane by

w,x + w.y + Waz = d'

where WI = a/(a + b + c), w. = b/(a + b + c), Wa = c/(a + b + c),
and d' = d/(a + b + c). The left-hand side of this expression is
a weighted average of the coordinates x, y, and z.
A plane P is a supporting plane of S at the boundary point Uoof

S, if Uois a point of P and if S lies completely on one side of P.
Algebraically the supporting plane properties are

(5.15) ax+by+cz~d for all (x, y, z) € S
or

for all (x, y, z) € Sax+by+cz:S::;d(5.15a)
and
(5.16) axo + byo + cZo= d where Uo= (xo,Yo,zo)'
If S is a bounded set and P is a plane, then P can be moved

parallel to itself until it becomes a supporting plane of S. If S is
a convex set and Uois a boundary point of S, then there is a sup-
porting plane P of S at uo' Two convex sets having no points in
common may be separated by a plane.
A point u is said to be dominated by a point v if each coordinate

of u is at least as large as the corresponding coordinate of v and
it "* v. The admissible part of the boundary of a convex set S consists
of those boundary points which are not dominated by any points
of S. If S is a convex set and Uois on the admissible part of the
boundary of S, then S lies above a supporting plane ax+by+cz=d
through Uowhose coefficientsa, b, c are non-negative. Conversely,
if aX + by + cz = d is a supporting plane of the convex set S (from
below) with a, b, c positive, then the boundary points of S which
touch the plane are on the admissible part of the boundary. If any
of the coefficients a, b, c are zero, i.e., if the plane is parallel to one
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of the three axes, then at least one of the boundary points of S
which touch the plane is on the admissible part of the boundary.
However, there may be other boundary points of S which touch the
plane and are not on the admissible part of the boundary.
If these remarks are interpreted algebraically after dividing a,

b, c, and d by a + b + c, we obtain the following:
If uo is on the admissible part of the boundary of the convex set,

then there are non-negative weights w" w2, Wa adding up to one such
that the minimum value of the weighted average wlx + w2y + waz
for (x, y, z) e S is achieved at uO' If Wl' w2, wa are positive weights
adding up to one, any point Uo of S at which the weighted average
wlx + w2y + waz is minimized is on the admissible boundary of S.
If any of the weights are zero, then at least one of the points Uowhich
minimize the weighted average is on the admissible part of the
boundary.
We repeat that these results and notions are extensible in a rather

obvious fashion to higher than three dimensions.

8. THREE OR MORE UNKNOWN STATES OF NATURE

In this section we shall assume that there are k possible states
of nature. The statements that we make will follow from the k-
dimensional extension of the relations of the type established in
Section 7. The results discussed here will constitute brief exten-
sions of similar results in the case where there are two stat as of
nature. Because of the very few pure strategies available in the
two-states-of-nature rain example discussed in Sections 2 through
6, and because of the ease of graphic representations in two dimen-
sions, we were able to use the graphic representations to actually
locate various types of "optimal" strategies. In higher dimensions
or with more pure strategies available, it becomes impractical to
use graphic representations for this purpose. Nevertheless they can
be used to understand certain important properties of various
types of strategies which will be useful in actually computing these
strategies.
Corresponding to each strategy s, there are k expected losses

given by £(8) = (L(O" s), L(02' 8), ••• , L(Ok' 8». If sand 8* are
strategies which yield expected loss points £(s) and £(8*), then
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mixing sand s* with probabilities 1 - wand w will yield the ex-
pected losspoint (l-w)L(s) + w£(s*). But this means that all points
on the line segment connecting £(s) and £(s*) are attainable with
the use of mixed strategies. In fact, the set of expected loss points
obtained with the use of mixed (randomized) strategies is the convex
set generated by the points representing the pure strategies.
A strategy s is at least as good as s* if

£(011 s) ::;;£(011 s*), £(Os, s) ::;;£(Os, s*), ••• , £(Ok' s) ::;;£(Ok' s*).

A strategy s is equivalent to s* if
£(01) s) = £(OJ> s*), £(Os, s) = £(Os, s*), ••• , £(Ok' s) = £(Ok' s*).

A strategy s dominates a strategy s* if s is at least as goodas s* and
s is not equivalent to s*. In this case, each coordinate of the point
representing s is less than or equal to the corresponding coordinate
of s*, and at least one coordinate of s is less than the correspond-
ing coordinate of s*.
A strategy s is admissible -if there is no strategy which dominates

it. As before, we shall assume that the convex set of expected
losses attained by using all strategies, pure and randomized, con-
tains all of its boundary points. Then it is clear that it suffices to
confine one's attention to the class of admissible strategies.
In the contractor problem, Example 1.1, suppose that the con-

tractor discovers that in this community 30% of the new home-
owners have peak loads of 15 amp, 45% have peak loads of 20 amp
and 25% have peak loads of 30 amp. In other words, he can assume
a priori probabilities of 0.30, 0.45, and 0.25 for 0i' °2, and °3• Then
he would desire to minimize his weighted average of expected
losses 0'(s) = 0.30£(Oj> s) + 0.45£(02, s) + 0.25£(03, s). But 2"(s)
is a weighted average of the coordinates of £(s) with weights 0.30,
0.45, and 0.25. Suppose that W1l ws, and W3 are weights C~O)add-
ing up to one. A strategy which minimizes the weighted average
2.7(s) = WI £(°11 s) + W2 £(0 •• s) + Ws £(03, s) is called a Bayes
strategy for the a priori probahilities WI' w2, and w3•

As a consequence of the relations of the preceding section, it
follows that any admissible strategy is a Bayes strategy for some a
priori probahilities. Furthermore, if all the weights or a priori
probahilities are positive, the corresponding Bayes strategies are
admissible. If some of the weights are zero, at least one of the Bayes
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strategies will be admissible. Hence it makes sense to confineone's
attention to the class of Bayes strategies even if it does not make
sense to assume that the states of nature are random variables.
One advantage of applying this result is that it is often relative-

ly easy to compute Bayes strategies. Reasons for this will be
discussed in Chapter 6.
As in the two-dimensional case, geometric considerations make

it obvious that for any set of weights the corresponding Bayes
strategies consist of certain pure strategies and their mixtures. If
it makes sense to apply certain a priori probabilities to the possible
states of nature, then there is a pure strategy which is Bayes, and
one need not use mixed strategies.
The conservative statistician like Mr. Lancaster may wish to

apply that strategy s for which the largest of £(811 s), L(8., s), ... ,
£(8k, s) is as small as possible. This criterion is called minimax
expected loss. Geometrically the set of points (x, y, z) for which
max (x, y, z) = c consists of parts of three planes parallel to the
axes;1 see Figure 5.18. These are:

PI = {(x, y, z) : x = c, y ~ c, z ~ c}

P2 = {(x, y, z) : x ~ c, y = c, z ~ c}
and

P3 = {(x, y, z): x ~ c, y ~ c, z = c}.

PlJ P., and P3 have the one apex point (c, c, c) in common. PI and
P2 have the half-line

£12= {(x, y, z) : x = c, y = c, z ~ c}

in common. Similar remarks apply for £13and £23. The minimax
expected loss strategy may be obtained by moving the set

{(x, y, z) : max (x, y, z) = c}

by increasing c until it touches the boundary of S. If it touches at
the apex, the minimax strategy s will have the property that

£(81, s) = £(82, s) = £(83, s).
Otherwise the boundary will lie on some but not all half-planes PII

P2, P3• Suppose the boundary lies on PI and P2(and hence £12)but
not on P3• Then the minimax strategy is a Bayes strategy for some
1 The largest of the three numbers (x, y, z) is represented by max (x, y, z).
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z
3

x 3

Figure 5.18. Diagram of {(x, y, z): max(x, y, z)= 2}.

a priori probabilities with Wa = O. Furthermore, L(OI>s) = L(02' s).
If the boundary lies on PI but not on P2 or Pa, the minimax expected
loss strategy is a Bayes strategy for the weights (1, 0, 0). In other
words, the minimax strategy then minimizes L(OI>s).
In general, for k states of nature, the situation is as follows. The

minimax strategy is Bayes for some a priori probabilities WI> W2, ••• ,
Wk' The expected 10ssesL(0" s)corresponding to the non-zero weights
WI among WI> W2, ••• , Wk are all equal to each other.
The minimax risk strategy is obtained by applying the minimax

criterion to the risks or expected regrets. The risks are obtained by
subtracting the smallest possible loss for 0, from L(OI' s). Geometri~
cally this corresponds to shifting S in each direction.
Although many statisticians approve of confining their attention

to risks and usually do so, some of them are reluctant to accept
the minimax risk criterion. (See Exercise 5.42.) For these statis-
ticians who object to minimax risk, there is.consolation in the fact
that a Bayes strategy can be obtained not only by minimizing the
weighted average of expected losses

(5.17) .2"'(s) = wIL(OI> s) + w2L(02' s) + ... + wkL(Ok' s)

but also by minimizing the weighted average of risks
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(5.18) ~(s) = WI R«(}1J s) + w. R«(}., s) + ... + Wk R«(}k' S) •

9. SUMMARY

The possibility of using randomized strategies makes it possible
to apply geometric relations involving convex sets to the theory
of decision making in the case of k possible states of nature.
When it is possible to apply a priori probabilities to the states of
nature, one can obtain Bayes strategies. A Bayes strategy is
geometrically represented as a boundary point on the convex set S
of possible expected loss points (L«(}I' s), L«(}., s), ... , L«(}k' s)) such
that a plane corresponding to the a priori probabilities is a support-
ing plane of S at this point. Even in the case where it does not
make sense to consider the state of nature as random, it does pay
to consider Bayes strategies since the class of Bayes strategies
contains the admissible strategies. Furthermore, as we shall see
in Chapter 6, Bayes strategies are relatively easy to compute. For
the benefit of statisticians who prefer not to have decisions depend
on the result of irrelevant experiments and, therefore, abhor ran-
domized strategies, it is interesting to note that for any set of a
priori probabilities there is at least one pure Bayes strategy.
The criteria minimax expected loss and minimax risk were discus-

sed and are each subject to certain fundamental objections. One
of the basic statistical problems which is still unanswered is that
of determining what constitutes a reasonable criterion for selecting
an optimal strategy.
In spite of this basic lack, the situation is not really very black.

In practice there is ordinarily available a large quantity of data.
Then, as is often the case, if a priori probabilities are picked rather
arbitrarily and the Bayes strategy is compared with the minimax
expected loss criterion or minimax risk criterion, all of these tend
to be very similar strategies and correspond to neighboring risk
points with very small risks. In fact, there is little reason to object
to minimax risk if, in a particular example, this criterion gives the
assurance of a very small risk.
One suggestion for selecting a strategy is basically the follow-

ing. When a problem is approached, there is usually available a
great deal of miscellaneous and somewhat relevant information
which may lead one to think of certain states as more likely than
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others. With this information one may approximately measure
one's "degree of belief" by some a priori probabilities of the O's.
From this point on, apply the corresponding Bayes strategy.
In this chapter we have spent a relatively great deal of time in

examining the relations among strategies without examining the
meaning of these strategies in the particular problem. It is some-
times possible to list all strategies and examine their risks without
attempting to think of what there is about a strategy that makes
it more reasonable than others. On the other hand, a general rule
of thumb for a reasonable strategy is that it uses the data to guess
at the state of nature and then takes an action which would be good
if the guess were correct. Because a wrong guess may sometimes
be catastrophic, it is important to hedge by trying to avoid actions
which are very bad if the guess is wrong. Hence in the rain problem,
the action a. is not especially good whether it rains or shines. If
the data strongly suggest rain, one should use a3• If they strongly
suggest shine, one should use al• However, if they do not strongly
suggest one or the other, it sometimes pays to hedge by taking
the mediocre action a.which protects against the wrong guess. This
principle is applied in Exercise 1.2 where the contractor example
was expanded by introducing an action which is not optimal for
any state of nature.
In many problems it will be quite difficult to compute strategies

which are "optimal" in some sense. Frequently we shall have to
be satisfied with suggesting strategies which seem reasonable and
then computing the risks associated with these strategies. Often
the loss associated with a given action a and the state of nature 0
are not precisely known. Or the problemmay be relevant for many
of the statistician's customers, and they may have different loss
tables. In such cases, we may merely list the action probabilities
for each strategy s considered (see Table 5.5), and leave it to the
customer to decide which strategy's action probabilities he likes
best. When listing the action probabilities, it is not uncommon to
compare them with ideal action probahilities (see Exercise 5.3).
Exercise 5.45. For a two-state, three-action problem, the losses

and probability distribution of the data are given below.
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Losses Probability Distribution

al ~ a3 Zl Z1

81 4 3 1 81 0.7 0.3

82 2 4 6 82 0.5 0.5

List the ideal action probabilities, compute and graph the risks
for all pure strategies, compute a Bayes strategy for a priori
probabilities 0, i), and graphically represent the minimax risk
strategy. Is there more than one Bayes strategy for the above a
priori probabilities? Evaluate the minimax risk and the weighted
average of risks for the Bayes strategy.
Exercise 5.46. For a three-state, two-action problem, the losses

and probability distribution of the data are given below.
Losses Probability Distribution

4

3

2

5

6 83

0.7

0.5
0.4

0.3
0.5
0.6

List the ideal action probabilities, compute the risks for all pure
strategies, and compute a Bayes strategy for a priori probabilities
(0.3, 0.3, 0.4). Is there more than one Bayes strategy for these
a priori probabilities ?
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CHAPTER 6

The. Computation of Bayes Strategies

1. A POSTERIORI PROBABILITY AND
THE NO-DATA PROBLEM

As Mr. Nelson and his friends were squabbling about strategy,
the hotel owner, Mr. Solomon, came to the door and politely sug-
gested that they make less noise. They apologized and explained
their difficulties to him, whereupon he suggested that they make
use of the fact that in North Phiggins it rains only 40,* of the
days. After a little computing, they all agreed that 86 was the
appropriate Bayes strategy. However, Mr. Lancaster, who was
put out by the general rejection of his criterion, raised a new issue.
In his hometown, rainy days are more likely to be followed by
rainy days than are sunp.y days.
Mr. Solomonadmitted that this was true in North Phiggins too.

In fact, he had observed that 70,* of rainy days were followed by
rainy days, whereas only 20,* of sunny days were followed by
rainy days. "Then," claimed Mr. Lancaster, "if yesterday was
a rainy day, we should apply the Bayes strategy corresponding to
the a priori probabilities 0.3 for sunny and 0.7 for rainy. If
yesterday was a sunny day, we should use probabilities 0.8 and 0.2.
In neither case should we use 0.6 and 0.4." The others had to
admit that this seemed reasonable and, noting that it had been
rainy the day before, they all used the Bayes strategy for a priori
probabilities 0.3 and 0.7. This led them all to apply 818 even though
their loss tables differed somewhat. Because the rain indicator
read" dubious" they all left the hotel with their complete rain
outfits, much to Lancaster's pleasure.
Being in a somewhat reflective mood,Mr. Solomonwas intrigued

by the following notion. Two pieces of data (observations) had
been used. One was yesterday's weather, which might have been
rainy or sunny. The other was the rain indicator reading, which

166
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could have been" fair," "dubious," or" foul." Altogether, there
were six possible pairs of data. These were: (rainy yesterday,
" fair" reading), (rainy yesterday, "dubious" reading), (rainy
yesterday, "foul" reading), (sunny yesterday, "fair" reading),
(sunny yesterday, "dubious" reading), and (sunny yesterday,
"foul" reading). For each of these six possible pairs, there were
three possible actions. Altogether, there were 3x 3x 3x 3x 3x 3
= 36 = 729 possible pure strategies. But by using yesterday's
weather to compute a modified a priori or rather an a posteriori
probability, his guests had apparently been satisfied that they had
used that information to the fullest extent possible and could now
treat the problem as one having the new probabilities for 0,and 0.
and with the rain indicator reading as the only datum (and thus
with only 27 pure strategies). Two questions intrigued Mr.
Solomon. First, was the procedure used by the guests correct?
That is, must the Bayes strategy for the two observation problem
with its 729 possible strategies be the same as the Bayes strategy
obtained by "digesting" one of the observations into the a priori
probability and then solving the reduced 27-strategy problem?
Second, could the other observation (indicator reading) also be
"digested" into the a priori probability, further reducing the
problem to a more trivial one with no data? As we shall see later,
the answer to each question is "yes." Let us discuss how to
find Bayes strategies for no-data problems, i.e., for problems
where no data are available but the a priori probabilities are
known.
Suppose then that Mr. Nelson had no weather meter but knew

that the probabilities of sunny day and rainy day were 0.6 and 0.4
respectively. Since he has no data, his available pure strategies
are either: (1) to take action a,; (2) to take action a.; or (3) to take
action aa. If he takes action a" his regret (see Table 5.6) is 0 under
8, and 3 under 0., and his risk is (0.6)0+ (0.4)3= 1.2. Similarly,
for action a., his risk is (0.6)1+ (0.4)1= 1.0, and for action aa it
will be (0.6)3+ (0.4)0= 1.8. Thus the solution of his no-data
problem is to take action a.. In Table 6.1 we indicate a tabular
presentation of this solution based on the following definitions. The
risk B(w, a) corresponding to the a priori probabilities given by
w = (w" W., ••• , Wk) and action a is defined by
(6.1) B(w, a) = w, r(OHa) + w. r(O., a) + ... + Wk r(Ok' a).
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TABLE 6.1

TABULAR PRESENTATION OF THE No-DATA PROBLEM

Regrets A Priori Rain Example:
Probabilities Regrets

al U2 W al a, as W

BI r(B!> all r(B!> a,) WI BI 0 1 3 0.6

B. r(B., all r(B., a,) w. B. 3 1 0 0.4

B(w, a) 1.2 1.0 1.8

Bk r(Bk, all r(Bk, a,) U'k
B(w, a) B(w,al) B(w,a,)

gJ(w) =1.0
Bayes action = a,

Bayes risk = <CJ1 (Ui)
Bayes action = action which minimizes

B(w,a)

The Bayes action for the no-data problem with a priori proba-
bilities given by w is the action a which gives the smallest value of
B(w, a). The risk corresponding to this Bayes action is ~(w) and
is called the Bayes risk and is

(6.2) gJ(w) = min (B(w, al), B(w, az), .•• ).
*Exercise 6.1. In Example 1.1, suppose that the contractor has

not gathered any of the data but that he is told that each state of
nature has a priori probability 1/3. Which action should he take?
What is his Bayes risk?
Exercise 6.2. Find the Bayes action and the Bayes risk for the

no-data version of the problem you set up in Exercise 1.3 when the
states of nature have equal a priori probability.
Exercise 6.3. Do the same for the example of Exercise 1.5.
Exercise 6.4. Do the same for the rain problem, Example 5.1.
Exercise 6.5. Do the same for the problem of Exercise 5.18.
Exercise 6.6. Do the same for the problem of Exercise 5.45.
*Exercise 6.7. If Mr. Nelson had a crystal ball which told him
what the state of nature was, he could take the proper action.
How much should Mr. Nelson be willing to pay for the use of a
crystal ball if he had no rain meter but knew that the a priori
probability of rain was 0.4?
Some further insight may be gained by the following graphical

representation of the solution of the no-data problem which we
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present for the case where there are two possible states of nature.'
If the a priori probabilities are given by w = (WlJ w2) = (1 - w, w),
we may regard

B(w, a) = (1 - w) r(OlJ a) + w r(O •• a)

as the value of a function defined for 0 ::;;w ::;;1. This function is
represented by a straight line. Thus B(w, a,)=(1-w)0+(w)3=3w
is a straight line which goes through the points (0,0) and (1,3);
see Figure 6.1. Similarly B(w, a2) = (1 - w)l + (w)l = 1 repre-
sents a horizontal straight line and B(w, aa) = (1 - w)3 + (w)O=
3 - 3w is a straight line.

3

Figure 6.1.

The Bayes action is the a for which B(w, a) is a minimum, and
this minimum value is the Bayes risk .9J (w) which is represented
by the heavy lines for 0::;; w ::;;1. Thus we see that, in the rain
problem, Example 5.1,
a, is the Bayes action if 0 ::;;w ::;;1{3;
a. is the Bayes action if 1{3::;;w ::;;2{3;
aa is the Bayes action if 2{3::;;w ::;;1.

Let 8, represent the set of w's for which a, would be the Bayes
action; 8. the set of w's for which a. would be the Bayes action;
1 These graphical ideas are extensible, with some difficulty in visualization,

to the case of more than two states of nature.
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and 8a the set of w's for which aa would be the Bayes action. In
the rain problem, 81 = {w: 0 ::;;w ::;;1/3}; 82 = {w: 1/3 ::;;w ::;;2/3};
and 8a = {w: 2/3 ::;;w ::;;I}. If w = 1/3, either ah a••or a randomized
mixture of these can be taken, and if w = 2/3, either a.. aa, or a
randomized mixture of these is appropriate.

Exercise 6.8. Draw figures showing B(w, a1), B(w, a.), B(w, aa),
and ,q(w) for the problem of Exercise 5.45.
Exercise 6.9. Draw figures showing B(w, a1), B(w, a.), and

.ar(w) for the problem of Exercise 5.18.

2. CONDITIONAL PROBABILITY

In Section 1 it was proposed that the problem of finding a Bayes
strategy can be reduced to that of solving a no-data problem by
using the data to convert the a priori probabilities to a posteriori
probabilities. These so called a posteriori probabilities will be seen
to be special cases of conditional probabilities which we shall study
in this section. Conditional probability arises in dealing with the
following type of problem. Suppose that an experiment is per-
formed and A and B are two sets of possible outcomes. If someone
who saw the outcome reported that A had occurred, how would
this information affect the probability of B? To be more specific,
let us consider the following example.
Example 6.1. Mr. Sharp recently took a job as a cook in a

restaurant. Owing to considerable research in the past, he noticed
that customers could be classified in two ways. They were either
affluent (as indicated by being well dressed) or not affluent. Also,
they were either big eaters (as indicated by having double orders)
or not big eaters. He also observed that in the long run the pro-
portion of customers in these various classifications could be
described approximately by Table 6.2.

TABLE 6.2
PROBABILITY TABLE FOR CUSTOMERS AMONG VARIOUS CLASSES

B B
Big Eater Not Big Eater

Affluent A 0.2 0.1 0.3
Not affluent A 0.2 0.5 0.7

0.4 0.6 1.0
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In other words, 20% of the customers were affluent and big
eaters, 50% were neither, 40% were big eaters, etc.
For some time Mr. Sharp used to add to his income by betting

the other cook that the next customer would not be a big eater.
After a few weeks the other cook finally realized that he was losing
money and insisted on odds of 3 to 2. Mr. Sharp agreed that these
odds of 3 to 2 against big eaters were reasonable but he insisted
that he should be allowed to select which side he favored. He then
bribed the waiter to wink at him before announcing the order if
the customer was affluent. Mr. Sharp figured that, since in the
long run 20% of the customers were affluent and big eaters and
only 10% were affluent and not big eaters, if he confined his atten-
tion only to affluent customers, then 2(3 of them were big eaters.
Then he would do well to bet on big eaters. On the other hand,
only 2(7 of nonaffluent customers were big eaters. When the waiter
winked, Mr. Sharp bet that the customer was a big eater. Other-
wise he bet the other way.
Now let us analyze this example more formally. At first Mr.

Sharp considers the entry of a customer into the restaurant as an
experiment. The outcome of the experiment is the customer. The
set A is the set of all possible customers who are affluent. B is the
set of possible customers who are big eaters. We define {A and B}
as the set of all elements which are in both A and B. In our ex-
ample {A and B} is the set of all possible customers who are both
affluent and big eaters.
Similarly {A and B} is the set of all possible customers who

are affluent and not big eaters. The probability, P{A and B}, of
the customer being affluent and a big eater was estimated by
Mr. Sharp to be 0.2. In general the entries of Table 6.2 are
approximations of those in Table 6.3.

TABLE 6.3

PROBABILITY TABLE FOR TWO-WAY CLASSIFICATIONS

A
A

B

PtA and B}
PtA and B}

P{B}

B
PtA and B}
PtA and B}

P{B}

PtA}
PtA}
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Let us call an experiment relevant if its outcome is an element of
A. It seems reasonable to define P{BIA}, the conditional prob-
ability of B given A, as the long-run proportion of relevant experi-
ments where the outcome is in B. Thus, in Mr. Sharp's example,
out of 1,000,000 experiments about 300,000 (1,000,000P{A}) yield
affluent customers and are therefore relevant. Of these relevant
300,000 experiments about 2{3 or 200,000 (1,000,000P{A and B})
yield big eaters. Hence the proportion of relevant experiments
where we obtain a big eater is

2 _ 1,000,000P{A and B} _ P{A and B}
3- 1,000,000P{A} - P{A}

Thus a reasonable definition of the conditional probability of B
given A is

(6.3) P{BIA} = P{A and B}
P{A}

or, equivalently, we may write

if P{A} * 0,

(6.4) P{A and B} = P{A} P{BIA}.

Thus, in Mr. Sharp's problem,

P{BIA} = P{A and B} = 0.2 = 0.667
P{A} 0.3

and

prBIA\ = P{A a~d B} = 0.2 = ~ = 0.286
1 J P{A} 0.7 7

while P{B} = 0.4.
Now let us consider the following example.
Example 6.2. What is the probability that 2 socks will be black

if they are taken in the dark from a drawer containing 5 black and
7 green socks? This problem can be solved, if we assume every
pair (mixed or otherwise) equally likely to be selected, by counting
the total number of pairs and the number of pairs which are both
black. Since there are 66 possible pairs of socks and only 10
possible black pairs, the desired probability is 10{66 = 5{33. Al-
though there are various methods of counting the numbers of such
pairs, another approach is the following. Let A be the set of pairs
for which the first sock is black. We abbreviate A = {first sock is
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black} . Let B = {second sock is black}. It is easy to see that
PiA} = 5/12 since there are 5 black out of 12 socks equally likely
to be picked first. Similarly P{BIA} = 4/11 since, after a black
sock is picked, there are 4 remaining black socks out of 11 equally
likely remaining socks. Thus, PiA and B} = 5/12 x 4/11 = 5/33.
Example 6.3. There are six men labeled 1 to 6 lined up at

random. What is the probability that number 1 is at an end and
number 2 is next to him? P{l is at an end} = 2/6, P{2 next to 111
is at an end} = 1/5, P{l is at an end and 2 is next to I} =
2/6 x 1/5 = 1/15.
In Appendix E1 we extend Equation (6.4) to obtain the rather

intuitively obvious Equations (6.4a), (6.4b):

(6.4a) PtA and Band C} = PiA} P{BIA} P{CIA and B},
(6.4b) PiA and Band C and ... }

= PtA} P{BIA} P{CIA and B} ••..

Example 6.4. What is the probability that the birthdays of three
people selected at random will fall on different days of the year
(forgetting February 29)? The probability that the second will fall
on a date different from the first is 364/365. The conditional prob-
ability that a third will then fall on still another dat~ is 363/365.
The desired probability is [(364)(363)]/[(365)(365)]. Similarly, the
probability that 25 people selected at random all have different
birthdays is

(364)(363) (341) = 0 43
(365)(365) (365) .

which may seem surprisingly small since it follows that it is more
likely than not for at least 2 people out of 25 people to have the
same birthday.
Exercise 6.10. In Example 6.3 find the probability that man 1

is not at an end and man 2 is next to him. Find the probability
that 1 and 2 are together (irrespective of where 1 is).
Exercise 6.11. What is the probability that 3 cards drawn in

succession from a pack of 52 playing cards will be a heart, a spade,
and a heart respectively?
Exercise 6.12. What is the probability that 2 cards drawn from

a pack of cards will form a pair (have the same number)?
Exercise 6.13. In Mr. Sharp's betting on big eaters (Example
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6.1), suppose that he had to bet one way or the other on each
customer. If he bets on big eater, he wins 60 cents or loses 40
cents. If he bets against big eater, he wins 40 cents or loses 60
cents. What is his expected winning on the next customer to come
into the restaurant, assuming that Mr. Sharp will connive with the
waiter?
Exercise 6.14. In Table 6.3, eight parameters are listed. How-

ever, some of these are related to others. How many parameters
are required to enable one to know all the others? (For example if
P{A} is used, one would not need P{A} = 1 - P{A}, etc.)
Exercise 6.15. Construct the two-way classification probability

table for the sets A and B of Example 6.2. Compute P{AIB}.
Exercise 6.16. Using the information in Section 1 about proba-

bility of rain in North Phiggins, construct the two-way classifica-
tion probability table for A = {sunny yesterday} and B = {sunny
tOday}.
Exercise 6.17. If a poker hand has 3 spades and 2 hearts, and 2

hearts are discarded, what is the probability that 2 spades will be
drawn?
Exercise 6.18. Given that the roll of 2 dice yields a sum of 6,

what is the probability that the result of the first die is a I? a 3?
Exercise 6.19. Given that the roll of 2 dice yields a sum of 6,

what is the probability that either one of the dice is a I? a 3?

3. A POSTERIORI PROBABILITY

When we give states of nature a priori probabilities, we act as
though the state of nature were random. Then just as the observa-
tion "affluent" led to a revised (conditional) probability, of big
eater, the result of an experiment will similarly lead to revised
probabilities of the states of nature. These new probabilities,
conditional probabilities of the state of nature, given the result of
the experiment, will be called a posteriori probabilities.
Example 6.5. Let us assume that the contractor of Example 1.1

is informed that among his potential customers 20% have peak load
15 amp, 50% have peak load 20 amp, and 30% have peak load 30
amp. Thus we may assume that (J11 (J2' and (Ja have a 'lyriori proba-
bilities 0.2, 0.5, and 0.3 respectively. When interviewed, his
customer responds that he uses at most 15amp (Zs). In view of
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this observation, what are the a posteriori probabilities of {}I' {}2'

and {}3?

In the evaluation of the a posteriori probabilities, the state of
nature must be treated as random and is, therefore, designated by
8. Thus the contractor regards his experiment as one of selecting
a random customer in state 8 and a random reply Z from this
customer. The possible outcomes may be labeled ({}I' Zl)' ({}I' Z2)'
({}h Z3), ({}h z,), ({}2' Zl)' "', ({}3' z,). Note that the contractor observes
Z but not 8. We are given the a priori probabilities

WI = P{8 = {}l} = 0.2,
W, = P{8 = {}2} = 0.5,

and
W3 = P{8 = {}3} = 0.3.

What we called the probability distribution of the data, f(z I(}),
may be regarded as the conditional distribution of Z given the
state of nature {}. Thus,

f(Z31{}j) = P{Z = z318 = {}l} = 0,
f(Z31 (}2) = P{Z = Zj 18 = {}2} = 1/2,

and
j(z31 (}3) = P{Z = ~ 18 = {}3} = 1/3.

We are interested in the a posteriori probabilities, designated
by Wi> which are the conditional probabilities of the states of
nature given the data Z = Z3' These are

WI = P{8 = {}IIZ = Z3},
W, = P{8 = {}21Z = Z3},

and
W3 = P{8 = {}31Z = Z3}'

Using the definition of conditional probability, Equation (6.3),
we have

_ P{8 - {} IZ - 1. - P{8 = {}I and Z = Z3}
WI - - i - Z3J - fl'

PlZ = Z3J

We evaluate the numerator
P{O = 0, and Z = Z3} = P{O = O,} P{Z = z310 = O,}

= wJ(z31 0,) = 0,
P{8 = {}2 and Z = Z3} = P{8 = {}2} P{Z = ~18 = 02}

= wJ(z31 O2) = 0.25,
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P{lJ = (}3and Z = Za} = P{lJ = (}3}P{Z = ZallJ = (}3}

= Wa!(Z3!(}3) = 0.10.
To evaluate the denominator P{Z = Za}, which we designate by

j(Z3)' we note that the possible outcomes leading to Z = Z3 are
«(}1JZ3), «(}2'Za), and «(}3'Za). Then,

P{Z = Za} = P{lJ = (}Iand Z = Za} + P{lJ = (}2andZ = Z3}
+ P{lJ = (}3 and Z = Za},

and
j(Za) = wJ(Za I(}I) + wJ(z31 (}2) + wd(Za I(}3) = 0.35

is a weighted average of the probabilities of observing Z3 under the
various states of nature. Thus we have the a posteriori proba-
bilities

WI = 0,

(6.5)
_ 0.25 _ 5

W2-----, 0.35 7
_ 0.10 _ 2

W3-----.
0.35 7

We have used the data Z = Za to convert the a priori probabilities
(0.2,0.5,0.3) to the (i posteriori probabilities (0, 5/7, 2/7).
Obviously this computation can be extended to apply for any

observation Z. In general we have the following expression for
the a posteriori probabilities where there are three states of
nature.

(6.6)

WI=
WJ(ZI(}I)

j(Z)

W2=
W,j(ZI(}2)

j(Z)

W3=
w3f(ZI (}3)

f(Z)

where

(6.7) f(Z) = wJ(Z I(}I) + w,j(Z I(}2) + wd(Z I(}3)'
It is important to note that the a posteriori probabilities which

represent a conditional probability distribution on the states of



THE COMPUTATION OF BAYES STRATEGIES 177

nature given the data, involve only (1) the a priori probabilities
Wi and (2) the density of only the observed data for the various
states of nature, i.e.,f(ZI81), f(ZI82), and f(ZI8a).
To collect the ideas which have appeared in this section, we

present the evaluation of a posteriori probabilities for the con-
tractor example in tabular form. See Tables 6.4 and 6.5. This
evaluation is carried out for each of the possible observations.

TABLE 6.4

TABULAR FORM FOR COMPUTATION OF A POSTERIORI PROBABILITIES

Possible Observation

P{Z = z and 0 = 81}

P{Z = z and 0 = 82}

P{Z = z and 0 = 8a}

P{Z = z} = fez)

P{O = 811z = z} = WI

P{O = 821z = z} = W2

P{O = 831 Z = z} = W3

z

u'd(zI81)
wzf(z I82)
Wz!(zI 8a)

WI fez I 81) + u'zf(z I82) + waf(z I 83)

wlf(zI81)
fez)

u'2f(z I82)
fez)

w3f(z I 83)
fez)

TABLE 6.5

COMPUTATION OF A POSTERIORI PROBABILITIES FOR EXAMPLE 6.5

fez I8)

%1 %2 %3 %4 W Zl Z2 Z3 z.

it 0 0 0.2 u'd(zI81) 1(0. 2) ~o"1' (0. 2) ~o"ro' 2) ~o.oo0(0.2) =0.00
Ott 0 0.5 wzf(z I82) 0(0.5) =0.00l(0.5) =0.25l(0.5) =0.25 0(0.5)=0.00

00 i i 0.3 w3f(z I 83) 0(0.3) =0.001
0(0.3) =0.00i(0.3) =0.10 iCO.3)=0.20

fez) 0.10 0.35 0.35 0.20

0.10 =1 0.10 2 0.00=0 0.00=0WI 0.10 0.35=7" 0.35 0.20

0.00=0 0.25 5 0.25 5 0.00
W2 0.10 0.35=7" 0.35=7" 0.20=0

0.00=0 0.00=0 0.10 2 0.20
W3 0.10 0.35 0.35- 7 0.20=1
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The extension of these equations to more than three states of
nature is obvious and need not be discussed.'

*Exercise 6.20. Compute the a posteriori probabilities in Ex-
ample 1.1, when the states of nature are equally likely. Do this
for each of the four possibleobservations. (These results are used
in Exercise 6.29.)

Exercise 6.21. Dothe same as in Exercise 6.20 for your problem
in Exercise 1.3. (These results are used in Exercise 6.30.)

Exercise 6.22. Do the same for the example of Exercise 1.5.
(These results are used in Exercise 6.31.)

Exercise 6.23. Do the same for Example 5.1. (These results are
used in Exercise 6.32.)

Exercise 6.24. Find the a posteriori probabilities for Example
5.1 if the a priori probability of rain is 0.4 and" dubious" is
observed. What if the a priori probability of rain were replaced
by 0.8? by 1.0?

Exercise 6.25. There are three bags labeled 1, 2, and 3. These
bags contain respectively 3 white and 3 black balls, 4 white and 2
black balls, and 1 white and 2 black balls. Our experiment con-
sists of selecting a bag at random (each bag is equally likely to be
selected) and drawing a ball at random from this bag. Find the
probability of selecting bag 2, and drawing a black ball. Find the
probability of drawing a black ball. Given that a black ball has
been drawn, what is the conditional probability that bag 2 had
been selected? (It may be helpful to label the possible outcomes
(1, B), (1, W), (2,B), (2, W), (3,B), (3, W), and to note that the
set corresponding to drawing bag 2 is {(2,B), (2, W)}.)

Exercise 6.26. A drawer contains 7 red, 9 black, and 12 green
socks. What is the probability that 2 socks drawn at random
(without replacement) will match?

Exercise 6.27. Given that the two socks of Exercise 6.26match,
find the probability that they are red? black? green?

Exercise 6.28. Sixmen each toss a coinonce. If all but one have
the same result, that one is called the oddman. What is the proba-
bility that a specifiedman will be odd? What is the probability
that there will be an odd man?
, It has been common to label this computation as Bayes theerem which is

often described as a method of computing the probability of a cause (state of
nature) given the effect (data).
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4. COMPUTATION OF BAYES STRATEGIES

We are now in a position to apply the schemes suggested by Mr.
Solomon to compute Bayes strategies. First we shall use the data
to convert our a priori probabilities to a posteriori probabilities,
and then we shall solve the no-data problem corresponding to these
a posterwri probabilities.
The most important property of this scheme is that it does yield

the Bayes strategy (see Appendix Es). We illustrate the computa-
tion with Table 6.6.

TABLE 6.6

TABULAR FORM FOR THE COMPUTATION OF THE BAYES STRATEGY ApPLIED

TO EXAMPLE 5.1 WITH A Priori PROBABILITY 0.4 FOR RAIN AND
ONE OBSERVATION (WEATHER METER READING)

fez 18)

81

8.

Zl Z. Z3 W Zl (fair) z. (dubious) Z3 (foul)

0.600.250.15 0.6 wd(z 181) 0.36 0.15 0.09

0.20 0.30 0.50 0.4 w.f(z 18.) 0.08 0.12 0.20

fez) 0.44 0.27 0.29
r(8, a)

a1 az a3
0.36 0.15 0.09

0 1 3 WI
0.44 0.27 0.29

3 1 0 0.08 0.12 0.20w. - -
0.44 0.27 0.29

a1 az a3 I a1 a2 a3 a1 a. a3

B(w, a)
0.24 0.44 1.08

1
0.36 0.27 0.45

1
0.60 0.29 0.27

0.44 0.44 0.440.27 0.27 0.270.29 0.29 0.29

Minimiz-
ing action a1 aJ a3

A

g;;(w) 0.24 0.27 0.27-
0.44 0.27 0.29

Weighted average of 0.24 0.27

risks corresponding
(0.44)0.44-~(0.27)0.27

to the Bayes 0.27
strategy + (0.29) 0.29=0. 78

Note: In the bottom half, the no-data problem is solved for several sets of a
priori probabilities. To avoid rewriting the r(8, a) table three times, the layout
differs slightly from that of Table 6.1.
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4.1. Remarks

1. Crossing your bridge as you come to it. If there were many
possible observations, there would be many possible strategies.
The basic advantage to this method is that it is not necessary to
consider all possible strategies. One need only consider how to
react to the particular data observed. For example, if ~ (dubious)
had been observed, it would have sufficed to carry out the com-
putation in the second column alone to determine that the Bayes
strategy calls for a~. In this sense, this method permits you to
"cross your bridge as you come to it " rather than phrase your
detailed strategy in advance, thereby "crossing all possible
bridges you might conceivably come to."
If it is desired to know what the Bayes strategy is before carry-

ing out the experiment, then each column must be computed. In
our example, the Bayes strategy is that which selects all a~,and
as corresponding to observations Zll ~, and Zs respectively. This is
88, which we previously obtained by laboriously evaluating all pure
strategies first. Using this table, there is no need to evaluate the
other strategies. The last row is the weighted average of risks
corresponding to the Bayes strategy. This could also be computed
by evaluating ~(S8) = Wl R(Oh S8) + w. R(O•• S8)' In the table, we
used an alternative computation which is a by-product of the main
part of the table. We take a weighted average of the gjJ (w) corre-
sponding to the various observations where the weights are f(zl),
f(z~), •••.
2. Crossing bridges one at a time. Mr. Solomonis interested in

the following question. On one hand, he can compute the a
posteriori probabilities 1 - wand w based on his combined data
(yesterday's weather and today's rain indicator reading). On the
other hand, he could use the alternative method where:
(a) On the basis of yesterday's weather and the a priori proba-

bilities (l-w, w), he obtains a posteriori probabilities (l-w*, w*);
and
(b) on the basis of today's rain indicator reading and the a

posteriori probabilities 1 - w*, w*, he obtains a posteriori proba-
bilities 1 - w**,w**.
Do thesejinalprobalJilities, (l-w**, w**),coincide with (l-w, w)

which he would have obtained if he lumped his data together? The
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answer is shown to be "yes" in Appendix Ea and, consequently,
the Bayes strategy or rather the a posteriori probability can be com-
puted by "digesting" each piece of information one at a time. In
this sense, Mr. Solomonmay be said to be" crossing bridges one
at a time."
Graphically, this means that we start out with the abscissa w in

Figure 6.1. This represents the a priori probabilities (1 - w, w).
After the first datum appears, w is replaced by an a posteriori
probability w*, i.e., w jumps to location w* which depends on the
particular datum observed. When the second datum appears, w*
replaced by w**. If more data are obtained, the a posteriori proba-
bility goes through several successive values and finally ends up
at some value w. If this final value is on 8" the set corresponding
to action a1 ({w: 0 ~ w ~ 1/3} in this particular example), a1 is an
appropriate action. Similarly, if this final value falls on 82 or 8a,
the appropriate actions are a2 and aa respectively. The Bayes
risk is ,q(w) where w = (1 - w, w) is the final a posteriori proba-
bility. As more and more data are compiled, the a posteriori
probability tends to go toward the point representing the state of
nature.1 Thus, if 01 is the state of nature and considerable data are
compiled, w will tend to be close to 0, and the Bayes risk will be
small (see Figure 6.1). If O2 is the state of nature, w will tend to
be close to 1, and the Bayes risk will also be small. It is possible,
but unlikely, that after many observations the final a posteriori
probability will be far from 0 even though 01 is the state of nature.

3. Choice of experiments. If we had available the choice of
carrying out one of two possible experiments, which one should we
carry out? Ideally, we would like to select an experiment which
would send the a posteriori probability w to 0 if 01 is the state of
nature, and to 1 if O2 is. Excluding the use of crystal balls, we
may find it difficult to find such an experiment. Roughly speaking,
the closer an experiment comes to accomplishing that feat, the
better it is. Continuing in the Bayes point of view, we could
evaluate an experiment as follows. Suppose we are at w before
we perform the experiment. The location of w after the ex-
periment is a random variable whose distribution depends on w
and the experiment. The same can be said for .5!if = ,q(w). A
1 A proof of this statement is beyond the scope of this text.
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good experiment to perform is one which makes E(&j1) as small as
possible.
4. Does it pay to experiment? Suppose that there is a choice of

whether or not to perform an experiment at a certain cost. For
example, take the rain problem with a priori probability of rain
equal to 0.4. Then according to Table 6.1, the Bayes risk is 1.0.
If a weather meter were available, the Bayes risk would be 0.78.
Then it pays to use the weather meter if the cost of so doing is less
than 0.22. In general, one should experiment if the cost of so
doing is less than the consequent decrease in the Bayes risk.
This notion can be extended to the case where there is available

a sequence of experiments. After the ith experiment is performed
leading to the a posteriori probability w*, one compares two
quantities. The first is .Ql (w*), the Bayes risk of selecting an
action with no more experimentation; the seoond is '6"(w*), the
cost of taking one more observation and proceeding thereafter in
an optimal fashion. If.r4' (w*) :::;;'6'(w*), stop experimentation and
take the appropriate action. Otherwise continue experimentation.
Generally, this type of comparison is mathematically unfeasible,
but there are simple important examples where this idea permits
us to classify optimal rules for deciding when to sample.
The problem of whether to continue experimentation indicates

that, in the general decisionmaking problem, a strategy should be
a rule which decides after each observation:
(a) whether or not to continue experimentation;
(b) which experiment to take next if experimentation is con-

tinued; and
(c) which action to take if experimentation is stopped.
*Exercise 6.29. Apply the results of Exercise 6.20 to compute

the Bayes strategy.
Exercise 6.30. Apply the results of Exercise 6.21 to compute the

Bayes strategy.
Exercise 6.31. Apply the results of Exercise 6.22 to compute the

Bayes strategy.
Exercise 6.32. Apply the results of Exercise 6.23 to compute the

Bayes strategy.
Exercise 6.33. Communities such as East Phiggins usually

intensely like or dislike "rock and roll" music. On the basis of
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€xperience with other such communities, it is assumed that the
proportion of the population liking the music is either 60% (01) or
20% (0.). A booking agency which would like to determine whether
or not to book a rock and roll act in East Phiggins (actions a1 and
a.) has regrets given by

reB, a)

o
10

4
o

The probability distribution corresponding to the observation of
determining whether a random East Phiggindian likes rock and
roll is of course given by

j(zIB)
Zl (like) Z2 (dislike)

0.60
0.20

0.40
0.80

Use a table of random numbers to simulate 10 random observations
under the assumption, 01 is the state of nature. Start with a
priori probabilities (1/2, 1/2). After the first observation, these are
modified. After each observation, the previous probabilities are
modified to new ones. Compute the first two successive values of
these a posteriori probabilities. To what action would the Bayes
strategy based on the two observations lead? Is this the correct
action when we recall that 0 = 01? Forgetting that we actually
know 0 = 01> compute the Bayes risk after the two observations,
and determine how much utility was gained from the two observa-
tions. (Record the ten observations for use in Exercise 6.37.)
Exercise 6.34. Determine the Bayes strategies for Example 5.1

for a priori probability of rain, w = 0.1, 0.3, 0.5, 0.7, 0.9, and
locate these strategies on a copy of Figure 5.2.

5. INDEPENDENCE

In Section 2 we discussed conditional probability. There we
were able to use the information that the outcome was an element
of A to re-evaluate the probability of B. Suppose now that this
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information does not affect the probability of B. That iS,suppose
that

(6.8) P{BIA} = P{B}.

Then it seems reasonable to call the set B independent of the set
A. But since

P{A and B} = P{A} P{BIA}

this equation can be written

(6.8a) P{A and B} = P{A} P{B}

which is a more symmetric form. We define A and B to be in-
dependent if Equation (6.8a) applies.
It is customary (and sometimes hazardous) in statistical practice

to hypothesize that two sets are independent if one can think of
no reason why the fact that the outcome was an element in one
set should reflect a tendency for the outcome to be in or not to be
in the other set. For example, "heads" on the toss of a penny
should not have any effect on the outcome of the toss of a nickel.
Thus, if P{A} = 2/3 and P{B} = 3/8, where A = {nickel falls

heads} and B = {penny falls heads}, then
P{A and B} = P{(H, H)} = (2/3) x (3/8) = 6/24.

See Table 6.7.

TABLE 6.7

PROBABILITIES FOR THE Toss OF Two BENT COINS

Penny Falls Heads Penny Falls Tails
B B

Nickel falls

Heads A
Tails A

6/24
3/24

3/8

10/24
5/24

5/8

2/3
1/3

1.0

The other probabilities of Table 6.7 are now readily computable:

P{A and B} = P{(H, T)} = P{A} - P{A and B}
= 2/3 - 6/24 = 10/24

P{A and B} = P{(T, H)} = P{B} - P{A and B}
= 3/8 - 6/24 = 3/24
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P{A} = 1 - P{A} = 1 - 2{3= 1{3
P{B} = 1 - P{B} = 1 - 3{8= 5{8

P{A and B} = P{A} - P{A and B} = 1{3- 3{24= 5{24.

Notice that
P{A and B} = P{A} P{B}

P{A and B} = P{A} P{B}

and
P{A and B} = P{A} P{B}.

In other words, since A and B are independent, so are A and B,
A and B, and A and B.
*Exercise 6.35. Suppose a coin has probability 0.6 of falling

heads. If it is tossed four times, what is the probability of obtain-
ing H, H, T, H in that order?
Exercise 6.36. If a die is rolled twice, what is the probability

that the first roll is a 4 and the second a 2 or 3?
Exercise 6.37. Generalize Exercise 6.35 to compute j(Z I0) for

Exercise 6.33 where Z is the data consisting of the 10observations
which were recorded. Compute the a posteriori probability based
on Z. What action is called for? What is the Bayes risk corre-
sponding to the a posteriori probability?
Exercise 6.38. Four men play the game" odd man pays for

dinner" (see Exercise 6.28). If there is no odd man on the first
set of tosses, the procedure is repeated until there is an odd man.
Compute the probability distribution of N, the number of times
the procedure must be repeated.
°Exercise 6.39. Compute E(N) and (T~ in Exercise 6.38. Gener-
alize to k men.
Exercise 6.40. The probability of a bombhitting a target is 0.2.

Assuming that all bombs are independently aimed, compute the
probability that:

(a) If 3 bombs are dropped, all three hit the target;
(b) if 2 bombs are dropped, neither hits the target;
(c) if 5 bombs are dropped, all fail to hit the target;
(d) if 5 bombs are dropped, at least one hits the target.

Exercise 6.41. Messrs. A, B, and C are duck hunters whose
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probabilities of hitting a flying duck are 2/3, 3/4, and 1/4 respective-
ly. A duck flies over and they fire simultaneously. What is the
probability that the duck falls down hit?

oExercise 6.42. The probability that a coin falls heads is p. What
is the probability of exactly r heads out of n tosses? (Hint: Con-
sider the number of ways r heads and n - r tails can be arranged
in order.)

oExercise 6.43. In Exercise 6.42, suppose p ~ 0, n ~ 00 and
np ~ A. Compute the limit of the probability of exactly r heads.
Independence is especially important when it is applied to

random variables. Two random variables X and Yare said to be
independent if every set involving only restrictions on X is inde-
pendent of every set involving only restrictions on Y. Thus the
number of heads in the coin-tossing experiment should be inde-
pendent of the number rolled with a pair of dice. More often than
not, statistical theory treats examples where successive observa-
tions in experiments are independent random variables. If X and
Yare independent random variables, then

P{X = Xi and Y = y,} = P{X = Xi} P{Y = y,}.

The function which gives probabilities of sets involving restrictions
on X and Y together is called the J'oint probability distribution of
X and Y. Just as in the one-variable case, the joint probability
distribution can be summarized by the cumulative distribution
function defined by

F(a, b) = P{X ~ a and Y ~ b}.

In the discrete case, there is a discrete density f such that
(6.9) f(x, y) = P{X = x and Y = y}.

In the continuous case, there is a density, f, such that volume
under the surface z = f(x, y) corresponds to probability. There are
mixed cases where X is discrete and Y is continuous. These may
be treated in a similar fashion, but we shall not discuss those cases
here. If X has density g and Y has density h, then, in both the
discrete and continuous cases, independence of X and Y is equivalent
to

(6.10) f(x, y) = g(x) h(y).
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The notion of independent random variables is extensible to
more than two random variables in an obvious way.
In the past, we have spoken of independent observations

X X • •• on a random variable X. By this expression we meant
H 2'

that XII X••••• , etc., were independent random variables, each
with the same probability distribution function as X. Whenever
we speak of independent repetitions of an experiment, we mean
that the outcomes are independent.
The following properties of the sample mean

X = Xl + X2 + ... + X"
n

of n independent observations on X play a fundamental role in
evaluating the action probabilities of various procedures used in
statistics.

(6.11)

(6.12)

(6.12a)

E(X) = /lx = /lx

(Ti = (T~/n

ax = (Txtvn
(6.13) The probability distribution of X is approximately

normal with mean /lx and variance (T~/n.
Equations 6.11 and 6.12 are established in Appendix E3• Equa-

tion (6.11)states, for example, that for many repetitions the long-
run average of (Xl + X2 + X3)/3 is the same as the long-run
average of X. Equation (6.12) states that, as the sample size n
increases, the tendency of X to vary decreases like 1/"vn. Thus
we measure the order of magnitude by which X tends to deviate
from /lx. On the other hand Sentence (6.13), which we shall call
the approximate normality or central limit theorem, presents much
more information. It furnishes an approximation to the probability
distribution of X. The amazing conclusion that, no matter what
the probability distribution of X, the sample mean X tends to have
an approximately normal distribution is one of the most elegant,
powerful, and important results in the theory of probability. 1 A
proof of this result is somewhat beyond the scope of this course.
1 Strictly speaking, this result applies only if X has finite variance (Tk. All

bounded random variables have finite variance.
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Equations 6.11 and 6.12 can be regarded as applications of the
basic equations

(6.14)

(6.15)
/-Ix+y = /-Ix + /-Iy

when X and Yare independent. (See Appendix EIO.)

Exercise 6.44. Let X be a random digit. What are /-Ix and (J"i?
If X is the average of 10 random digits XII X •••.• , XlO, what are
flx and (J"~? If Y is the average of 50 independent X's (each X
based on 10 digits), what are /-Iy and (J"~? If Z is the average of
500 random digits, what are /-Iz and (J"i?Check these results em-
pirically. To do so, use a table of random numbers to compute 50
independent X's (each X based on 10 digits). Draw a histogram.
Does this histogram resemble a normal density? Compute the
sample mean and variance. These are Y = (X) and s~ respective-
ly. Are they close to /-Ix and (J"~? Does the deviation of Y from
flx seem reasonable in view of the value of (J"~?

In many problems, one is interested in the probability of an
event. The observations consist of ••successes" or ••failures" .
For example, a success might be identified with" heads" in a coin-
tossing problem or with "cure of a patient" in a drug-testing
problem. In such problems it is an advantage to replace the words
" success," "heads," or " cure" with a numerical-valued random
variable because so much of probability theory is devoted to such
random variables. The usual convention is to define the random
variable X such that

X = 1
X = 0

denotes a success
denotes a failure.

Suppose that P{X = I} = p = probability of success. Then

E(X) = (p)1 + (1 - p)O = P
E(X2) = (p)P + (1 - p)02 = P

and
(J"~ = E(X2) - [E(X)]2 = P - p2 = p(1 - p).

The random variable X is called a Bernoulli or dichotomousrandom
variable because there are only two possiblevalues that it can take.
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If independent successive trials give outcomes Xu X2, ••• , Xn,
then the total number of successes is given by

X, + X2 + ... + Xn

and the observed proportion of successes is
p = (X, + X2 + ... + Xn)/n

Observe that p is merely a special symbol for X, the average of n
independent observations on the dichotomous random variable X.
*Exercise 6.45. A coin has probability 0.6 of falling heads. If P

is the proportion of heads in 100 tosses, use Equations (6.11)
through (6.13) to approximate P{p ::::;0.5}.
Exercise 6.46. Mr. Sharp receives $5 (X = 5) if a random digit

is 0 or 5. He loses $1 (X = -1) otherwise.
(a) Show that E(X) = 0.2 and O"x = 2.4.
(b) Compute the probability that after 144 successive plays

of this game he will have lost money.
(Hint: Apply the approximate normality theorem and observe
that his total winnings are positive when his average winnings are
positive.)
Exercise 6.47. In Mr. Sharp's problem of Example 6.1, the

waiter's connivance would have done him no good if the sets" big
eater" and "affluent" had been independent. A measure of the
"dependence" would be given by Mr. Sharp's expected winnings
in Exercise 6.13. Evaluate this measure in the general case, in
terms of P{A}, P{B}, P{A and B}, etc. Here we assume that,
if he calls big eater, he wins P{B} or loses P{B}, and if he calls
against big eater he wins P{B} or loses P{B}.
Exercise 6.48. If X and Yare independent normally distributed

random variables, then aX + bY + c is normally distributed. If
further X and Y have means flx and fly and variances O"~ and O"~,
what can you say about X + Y, X - Y, and 2X - 3Y?
Exercise 6.49. The pulling strength of a randomly selected West

Phiggindian has mean 500 lb and standard deviation 100lb. Com-
pute the probability that a team of 49 men will outpull a team of
50 men if the teams are selected at random.
Exercise 6.50. The Jiffy accounting firm speeds up its work by

rounding off all items to the nearest dime. If it is called upon to
add up 10,000items, what is the probability distribution of its error
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due to rounding? (Assume that the last figure in each nonrounded
item is a random digit and that each number ending in 5 is round-
ed upward; e.g., 65 is rounded to 70.)

6. SUMMARY

The conditional probability of B given A is defined by

P{BIA} = PiA and B}/P{A}
or

P{A and B} = PiA} P{BIA}.

The sets A and B are said to be independent if

P{A and B} = PiA} P{B}.

The random variables X and Yare said to be independent if each
set involving restrictions on X alone is independent of each set in-
volving restrictions on Y alone. If X and Y have probability
density functions, then X and Yare independent if and only if

f(x, y) = g(x) h(y)

where f, g, and h are the densities of X and Y together, of X, and
of Y respectively. The approximate normality theorem states that,
if Xl' X2, ••• , X" are independent observations on a random vari-
able X with mean f1 and variance IT2, then the distribution of

X = X, + X2 + ... + X"
n

is approximately normal with mean f1 and variance IT'/n. An especi-
ally important example (see Exercise 6.45) arises when we consider
the proportion p of successes in n independent trials of an event
with probability p. Then p has mean p and variance p(l - p)/n.
If n is large, P is approximately normally distributed.
To compute Bayes strategies corresponding to given a priori

probabilities, one may proceed as follows. Suppose there are k
possible states (J" (J., ••. , (Jk with a priori probability w =
(wu w2, ••• , wk). Suppose that the distribution of Z when (Ji is the
state of nature is given by f(zl(J/). Then the over-all probability
distribution of Z taking w into account is given by

f(z) = wJ(zI (J,)+ w.f(zl(J2) + ... + wk f(z I(Jk)'
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The a posteriori probabilities are given by w = (wH W., ••• , wk)
where

If another observation is taken, a new a posteriori probability is
obtained by replacing w by w*. In this way each observation leads
to a new set of a posteriori probabilities. If the a posteriori proba-
bilities after the last observation are given by w = (wH W., ••. , wk),
the action to be taken is the one for which the weighted average

B(w, a) = WI r(OHa) + w. r(O., a) + ... + Wk r(Ok' a)
is a minimum. This minimum value is the Bayes risk ,q; (w).
Effective experiments are those which tend to make the a

posteriori probability tend to get close to (1, 0, 0, ... , 0) if 01 is the
state of nature and to (0, 1, 0, ... , 0) if O. is the state of nature,
etc. By comparing the Bayes expected risk after the last experi-
ment is carried out with the combined cost and the Bayes expected
risk after more experiments are carried out, one can - at least in
theory - determine whether it pays to continue experimentation.
It is worth noting that the a priori and a posteriori probabilities

represent probability distributions on the set of possible states of
nature. Furthermore, the above expression for B(w, a) is essenti-
ally the expectation of r(fJ, a) where fJ is treated as a random
variable with distribution determined by w. Keeping these notions
in mind, the discussion in this chapter can be extended to problems
where there are infinitely many possible values of O.
In our general description of decision problems, a strategy was

a detailed plan of how to react to all possible information which
becomes available. In practical problems where each observation
may take on one of many possible values and there are many
observations taken, the detailed listing of one strategy may be ex-
tremely complex. Furthermore, the number of possible strategies
may be immense. The beauty of Mr. Solomon's plan which yields
Bayes solutions by using a posteriori probabilities to "digest" the
data is that one need not consider in advance all possible observa-
tions. In other words, Mr. Solomon's plan is analogous to crossing
only those bridges that you come to, compared to the alternative
approach where a strategy must consider all possible bridges that
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you might conceivably come to. The computational advantages
derived from Mr. Solomon's plan are great.

7. REVIEW AT THE END OF CHAPTER 6

At this point we have finished the basic ideas underlying
statistical theory. Before we proceed to see how they are applied
in more standard statistical problems, we shall briefly review the
content of the first six chapters.
CHAPTER 1. This chapter consists essentially of the statement

of the problem of decision making in the face of uncertainty. This
statement is made via the contractor example.
CHAPTER 2. This chapter is a digression in the presentation of

the basic statistical ideas. However, in introducing some standard
methods of treating data, it prepares for the question of what are
important properties of probability distributions.
CHAPTER 3. Here the basic notion of probabIlity as a long-run

proportion is introduced. The idea of probability was implicitly
used in the contractor example.
CHAPTER 4. In the contractor example we introduced expected

losses. Here we see that under certain mild conditions there is a
utility, so that one should measure random outcomes by expected
losses or gains in utility. Using this fact, we gain insight into
when a statistician is interested in the mean, variance, median, or
other parameters of a probability distribution.
CHAPTER 5.
(A) There are six basic factors that enter into a typical statistic-

al problem of decision making. These are:
1. The possible actions a.
2. The possible states of nature O.
3. The losses (consequences of acts) l(O, a).
4. The experiment resulting in data Z with probability dis-

tribution j(z I0).
5. The strategies 8 of how to react to information.
6. The expected losses or the risks (consequences of strategies)

£(0,8), R(O, 8).
(B) Various criteria have been proposed for selecting one of the

available strategies:
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1. Admissible strategies are those which are not dominated
by other strategies.

2. Bayes strategies are those which minimize weighted
averages of the expected losses (or of the risks).

3. Minimax expected loss - a conservative approach.
4.. Minimax risk - a modification of the conservative ap-

proach.
(C) From the graphical point of view, certain results are almost

obvious.
1. The set of all randomized strategies is represented by a

convex set.
2. All admissible strategies are Bayes strategies for some a

priori probabilities.
3 (a). The Bayes strategies corresponding to positive a priori

probabilities are admissible.
3 (b). For any set of a priori probabilities there is at least one

pure (nonrandomized) Bayes strategy.
4. It should not be surprising if the minimax expected loss

strategy has equal expected losses for all states of nature.
CHAPTER6. The fact that all admissible strategies are Bayes

strategies for some a priori probabilities could be used to charac-
terize the class of all admissible strategies if it were easy to com-
pute Bayes strategies. The method suggested in Chapter 5, in
principle, involves listing all possible pure (nonrandomized)
strategies, evaluating the expected losses, and selecting the pure
strategies which minimize the weighted average of these losses.
This procedure may be completely impractical in problems where
there is a large number of possible outcomes of the experiment,
for then there are very many pure (nonrandomized) strategies.
The following is an alternative method of computing the Bayes

strategies. As a piece of data is observed, ••digest" it by replac-
ing the a priori probabilities for the states of nature by the easily
computed a posteriori probabilities. After each piece of data is
observed, replace the preceding a posteriori probabilities by new
ones. Finally, solve the no-data problem with the original a priori
probabilities replaced by the final a posteriori probabilities.
Here there is no need to list all possible strategies. We can even

evaluate the worth of the experiment before performing it and
judge whether it is worth the cost, if any, to perform it.
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Exercise 6.51. Suppose that in the contractor problem (Example
1.1), the a priori probabilities of Oil 0" and 03 are 0.3, 0.3, and 0.4
respectively.

(a) Compute the Bayes strategy.
(b) How much is the experiment worth?
(c) Compute the action probabilities and risks R(O, s) for the

Bayes strategy.
Exe?'cise 6.52. In Exercise 1.5, the loss function given happened

to be that of a settler who wanted to bring along a cello. He was
unaware that his wife had resolved to bring along a sewing
machine if they did not take an air conditioner. Her losses were
given by

4
4
4

10

4
1

These states of nature have a priori probability 0.2, 0.3, and 0.5
respectively.

(a) Solve the no-data problems for the settler and for his wife.
(b) Mr. Clark comes back with the observation Zp Find each

of their Bayes actions.
(c) A couple of weeks later, Mr. Lewis arrives and announces

that he had passed through East Phiggins and had observed Z3'

Find each of the Bayes actions based on both observations.
(Assume that the two observations are independent.)

SUGGESTED READINGS

See the readings suggested after Chapter 5.



CHAPTER 7

Introduction to Classical Statistics

1. INTRODUCTION

In the first six chapters, our examples were artificial or over-
simplified so that the main ideas in decisionmaking could be illus-
strated without being obscured by the complexities of real life. In
common statistical practice, it is not necessary to simplify and
idealize problems as much as we did. Nevertheless, there is still
a need for considerable idealization to convert the problems to ones
in which we can dothe computing necessary to proposeand evaluate
reasonable strategies.
In this chapter we shall illustrate how the decision making ideas

can be applied to several problems typical of the sort that occur in
actual statistical practice. In our illustrations we shall forego the
use of examples where the data consist of only one of a few possible
observations and where there are only a few possible states of
nature. Most problems in statistical practice are posed as problems
in testing hypotheses, estimation, or confidence intervals. In this
chapter we shall treat one or two simple examples of each type
of problem.

2. AN EXAMPLE OF HYPOTHESIS TESTING

Example 7.1. Mr. Good,manufacturer of parachute cord, buys
natural fibers from a supplier, Mr. Lacey, and fabricates them into
cord. The strength of the cord is of critical importance to its sal-
ability. Consequently, the strength of the fibers from which it is
made is also of critical importance. From time to time, he receives
a batch of fibers from Mr. Lacey and, before beginning manufac-
ture, he finds it necessary to ascertain whether the incoming fibers
are sufficiently strong. If they are not, his own finished product
will not be salable as parachute cord and must be marketed for

195
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some inferior use, such as binder twine, at a substantial economic
loss.
There are twoactions available toMr.Good. These are: aj-accept-

the batch and use the fibers in the manufacture of cord, and
a2-reject the batch and return the fibers to Mr. Lacey for a refund.
Mr. Good has been buying fibers from Mr. Lacey for many years

and has learned from experience that in any batch, the fiber
strength (force in grams required to tear a fiber) X of a fiber taken
at random from the batch is approximately normally distributed
with standard deviation lTx = 8 grams. The mean fiber strength
()varies from batch to batch. The value of () represents the un-
known state of nature and determines the regrets incurred in ac-
cepting or rejecting the batch.
On the basis of his knowledge of the business, Mr. Good has ap-

proximated his regrets in Figure 7.1. This is based on the fact that,
as () decreases from 32, the number of parachute manufacturers
who will buy his cord goes down considerably. When ()is 32, they
will all be happy to buy his cord, and if ()> 32, he will not only be
able to sell all his cord, but his reputation will improve. When ()
is 31, he will have somuch difficulty selling his parachute cord that

40

r

-10
28 29 30 31

(J
32 33 34

Figure 7.1. Regrets in Mr. Good's problem, Example 7.1.
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he will do no better than by renting his factory facilities until
another batch of fibers arrives.

To obtain relevant information about the unknown value of {},it
has always been Mr. Good's policy to perform the following experi-
ment. Select 64 fibers at random from the batch and individually
test them in the laboratory to determine their breaking strength.
For his last batch, the laboratory reported the following list of
strengths which are the observed values of Xl' X2, ••• , X64•

27.70 35.39 27.78 48.32 38.68 33.84 28.19 33.26 30.31 45.36
23.86 23.34 36.67 32.71 22.99 27.08 27.17 37.35 28.72 27.25
29.07 24.96 35.99 37.89 19.28 32.50 22.24 34.25 34.04 39.10
30.45 41.30 27.22 42.94 23.38 42.37 36.20 34.26 41.46 34.97
33.76 29.63 31.98 24.23 27.62 34.38 34.09 5.47 43.59 28.84
28.70 32.89 41.16 34.09 32.10 29.31 25.27 38.29 24.37 37.41
18.19 32.86 41.24 36.45

A strategy 8 is a "recipe" which tells us what action to take for
every possible sample Z = (Xl' X••... , X64). We must consider
what are the reasonable strategies and select one of these on the
basis of the risks corresponding to it. Once our strategy is selected,
we shall apply it to see how we should react to the above data.

One type of strategy which suggests itself is to use X as an in-
dication of {}and to accept the batch if X is "large" and to reject
the batch if X is "small." Three strategies of this type are the
following:

831.0:Take action al (accept batch) if X ~ 31.0 and action a.otherwise.
831.6: Take action al (accept batch) if X ~ 31.5 and action a.otherwise.
832.0:Take action al (accept batch) if X ~ 32.0 and action a.otherwise.

In general we use the designation:
8e: Take action al (accept batch) if X ~ c and action a. otherwise.

Even though there are infinitely many strategi€s of the above
type, there are many other kinds of strategies. For example,
the contrary man may reject the batch if X ~ 31.0 and accept
otherwise. The absent-minded man may accept the batch no matter
what the data happen to be. The lazy man may accept the batch
if (Xl + X2)/2~31.0 and reject otherwise. The involved man may
accept the batch if 2Xl - X. + 2X3 - X4 + ... + 2X63- Xo4 ~ 1000
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and reject otherwise. However, we shall note in Chapter 9 that,
in this problem, the class of all Bayes strategies (which contains all
admissible strategies) is the class of strategies 8e, and, therefore,
we need not consider these other varieties of strategies.' In Table
7.1 we illustrate the computation of the risks for 831..' We illustrate
the computation of the row corresponding to 0 = 30.5. Referring
to Figure 7.1, we have r(O, al) = 3.55 and r(O, a2) = O.

TABLE 7.1
COMPUTATION OF THE ACTION PROBABILITIES AND RISKS

FOR STRATEGY 831.5 IN EXAMPLE 7.1

State of Regrets Action Probabilities I RiskNature

e a, a2 I a, a2 I
r(e, all r(e, a.) P{X:2: 31.51e} PI X < 31.51e} R(e, 83'.5)

28.00 40.00 0.00 0.000233 0.999767 0.00932
28.50 27.50 0.00 0.00135 0.99865 0.0371
29.00 19.40 0.00 0.00621 0.99379 0.120
29.25 16.20 0.00 0.0122 0.9878 0.198
29.50 13.15 0.00 0.0228 0.9772 0.300
29.75 10.50 0.00 0.0401 0.9599 0.421
30.00 8.00 0.00 0.0668 0.9332 0.534
30.25 5.60 0.00 0.1056 0.8944 0.591
30.50 3.55 0.00 0.1587' 0.8413 0.563
30.75 1.60 0.00 0.2266 0.7734 0.363
31.00 0.00 0.00 0.3085 0.6915 0.000
31.25 0.00 1.20 0.4013 0.5987 0.718
31.50 0.00 2.20 0.5000 0.5000 1.100
31.75 0.00 2.95 0.5987 0.4013 1.184
32.00 0.00 3.55 0.6915 0.3085 1.095
32.25 0.00 4.00 0.7734 0.2266 0.906
32.50 0.00 4.40 0.8413 0.1587 0.698
33.00 0.00 5.00 0.9332 0.0668 0.334
33.50 0.00 5.35 0.9772 0.0228 0.122
34.00 0.00 5.50 0.99379 0.00621 0.0342

8 {ACcePt the batch (al) ifX :2:31.5
31.5 _

Reject the batch (a2) ifX < 31.5
, Strictly speaking, the absent-minded man's strategy is also admissible. Our

statement is correct only when we include thisstrategy (which we may label8_=)
and 8= in the class of strategies8e•
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To compute the action probabilities we note that X is normally
distributed with mean 0 and standard deviation <Tx/V64 = 8/8 = 1
gram.' Then, applying 83l.5, we accept if X :2: 31.5 and the proba-
bility of taking action a, is given by:

P{X:2: 31.510 = 30.5} = 0.1587,

similarly
P{X < 31.510 = 30.5} = 0.8413.

The risk is then obtained by taking the weighted average of the
regrets:

R(30.5,83l.5) = (0.1587)(3.55) + (0.8413)0 = 0.563.

In Figure 7.2 we present curves representing the ri8k function8
for 831.5 and for several other strategies. The risk function for 831.5

seems to have a larger hump for 0 > 31 than for 0 < 31. If we
wish to decrease the size of this hump, we must decrease the proba-
bility of taking the wrong action (a,) when 0 > 31. To decrease
the probability of taking action a" we must decrease the subscript
of the strategy 8e• Thus 83' has a smaller hump for 0 > 31 than
does 831.5' Looking at Figure 7.2, we see that the peaks of the two
humps can be equalized for some strategy "close" to 831.25 yielding
the minimax strategy. The minimax risk is close to 0.91.

There are several points which were brought out by the above
discussion. SinceX tends to be reasonably close to 0, and 0 = 31.0
is the break-even point where it does not matter which action is
taken, 831.0 is a reasonable strategy. Since the regrets r(O, al) are
larger (for 0 < 31.0) than r(O, a2) (for 0> 31.0), it is advisable to
decrease the probability of taking action all which can be done by
increasing the subscript of 8e•

Notice that the change called for in the strategy is quite small.
As is indicated in Exercise 7.1, the change is smaller when the

, The "normal approximation" or "central limit" theorem states that X is ap-
proximately normally distributed. In this case where we assumed that the original
observations are independent and normally distributed, we could state that X is
actually, and not just approximately, normally distributed. As a matter of fact,
the original observations in this example can be only approximately normally dis-
tributed, since they must be positive, and a normal random variable can take
negative values.
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--831.5

--- 831.25
---831.0
---- 830.5

Figure 7.2. Risk functions for several strategies in Example 7.l.

sample size is larger. This fact illustrates the general remark that,
although a good strategy depends on the nature of the regret func-
tion,it is relatively insensitive to small changes in the regrets if
there are considerable data available.

*Exercise 7.1. Mr. Goodincreases his sample size to 256. Let us
designate by s: the strategy which calls for action a1 if X256 , the
mean of 256observations, exceeds c. Evaluate the risk functions
for s:;, S:;.25' Guess the strategy which would be minimax.
2.1. Bayes Strategies
In the preceding section, the relative sizes ofthe regrets r(8, a1)
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and reO, aj) made it advisable to modify strategy 831 to decrease
the probability of taking action al• On the other hand, if there is
a priori probability to believe that 0 > 31.0 (where al is appropriate)
is more likely than 0<31.0, one should tend to increase the proba-
bility of taking action al•

Let us suppose that Mr. Good has observed on the basis of past
experience that the mean strength for batches of fibers behaves
like a random variable 0 which has a diBtribution approximately
given by the discrete density of Table 7.2.

TABLE 7.2

DISTRIBUTION OF MEAN FIBER STRENGTH FOR A RANDOM BATCH OF FIBERS

RECEIVED FROM MR. LACEY (I.E., A PRIORI PROBABILITIES)

8 128.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0
P{O=8} 0.00 0.01 0.02 0.03 0.05 0.07 0.12 0.15 0.20 0.15 0.10 0.07 0.03

31.531.0
c

30.5

" 7,
I---... ./-~ 0.4

CI>
1:; 0.3

~-&, 0.2
'ijj

:;: 0.1

o
30.0

~ 0.7.e
~ 0.6
'".,.;
.~ 0.5

The weighted average of risks corresponding to 83l.5 is

a"(83l.6) =(0.00)(0.00932) + (0.01)(0.0371) + (0.02)(0.120)

+ (0.03)(0.300) + ... + (0.03)(0.0342) = 0.61
Similarly we obtain the weighted average of risks for other stra-

tegies and graph them in Figure 7.3. Consequently, the Bayes
strategy is approximately 830.85 with average risk 0.42. Note that
the a priori probability distribution assigns much more weight to

0.8

Figure 7.3. Weighted average of risks for strategy 8e in Example
7.1 with a priori probabilities given in Table 7.2.
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{}> 31.0 than to {}< 31.0. It is reasonable to expect the risk for
the Bayes strategy to have a considerably smaller hump for
{}> 31.0 than for {}< 31.0, since the Bayes strategy is "tailored"
to behave especially well for those states of nature most likely to
occur (see Figure 7.2).
Exercise 7.2. How much should Mr. Goodbe willing to pay for

the laboratory report on the 64 breaking strengths? (Refer to the
a priori probabilities of Table 7.2.)
Exercise 7.3. What action does Mr. Good's Bayes strategy call

for when X = 31.97 (this is the sample mean of the 64observations
recorded)? What action does the minimax strategy call for?
Exercise 7.4 Using Table7.2, evaluatethe weightedaverage ofrisks

for both strategies of Exercise 7.1. Guess at the Bayes strategy. How
muchis the large sampleworth if s~ is used?

2.2. The Name "Testing Hypotheses"

Why is Mr. Good's example called an example of hypothesis test-
ing? In this example there are only two actions. Action a1 is ap-
propriate for {};;:::31.0, and action a, is appropriate for {}< 31.0.
Taking action a1 (accepting the batch) is equivalent to acting as
though {};;:::31.0, or to accepting the hypothesis (assumption) that
{};;:::31.0. Taking action a, is equivalent to rejecting the hypothesis
{};;:::31.0 in favor of the alternative hypothesis {}< 31.0. The fact
that Mr. Goodaccepts the hypothesis or acts as though it were true
does not imply that it is true, nor even that he is convinced that it
is true. With some bad luck or lack of good data, he may be led to
reject the hypothesis (take action a2) when it is true ({);;:::31.0), or
to accept the hypothesis (take action a1) when it is false ({)< 31.0).
The probabilities of making such errors are called the error proba-

bilities. In Figure 7.4. we present (1) the action probabilities and
(2) the error probabilities for S31, S31.'5, and S31.5' In presenting the
action probabilities, we omitted the probability of taking action a2

because that is simply 1 minus the probability of taking action a1•

The error probabilities e({}, s) are given by the difference between
the probability of taking action a1 and the ideal (lor 0 depending
on whether {};;:::31.0 or {}< 31.0). Anyone of the following three
curves is completely descriptive of the action probabilities:
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Figure 7.4. Action probabilities and error probabilities for

several strategies ih Example 7.1.
;I

as«(J, al)-probability of taking action al;
as«(J, a.)-probability of.taking action a.;
e«(J,8) -probability of error.

- 'j

The error probabilities are e.speciallyuseful since, for two-action
problems, the risk is given by ,j

R«(},8) = e«(J, 8) r«(J)
where r«(J) is the regret due t~ takihg the wrong action when (J is
the state of the nature. Note that as the index c of 8e increases,
the probability of taking action a; is diminished, increasing the
error probabilities for (J ~ 31.0and1decreasing them for (J < 31.0.
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Exercise 7.5. Plot c(8, s) for the two strategies of Exercise 7.1.

2.3. Another Example
It may help to fix the ideas of hypothesis testing if they are

illustrated in another example.
Example 7.2. Mr. Baker has developed a new cake mix for retail

consumption. He can either use it to replace his old mix (a1) or
stick to his old mix (a,). He feels that it would pay to introduce
the new mix if at least 60~'; of his customers prefer it to the old.
His estimated regret function is given in Figure 7.5 where the un-
known state of nature p represents the proportion of the customers
who prefer the new mix. Let p be the proportion of 100 customers
selected at random who prefer the new mix. Let Se be the strategy
which consists of taking action a1 if p ?: c and action a, otherwise.

TABLE 7.3

ACTION PROBABILITIES AND RISKS FOR 80.6 OF EXAMPLE 7.2

I Action Probablities I Risk

I Pip ~~.61p} Pip ;~.61p} IR(p, 80.6)

0.450 0.342 0.000 3.015 0.0013 0.9987 0.0004
0.475 0.298 0.000 2.503 0.0062 0.9938 0.0018
0.500 0.241 0.000 2.000 0.0228 0.9772 0.0055
0.520 0.200 0.000 1.601 0.0547 0.9453 0.0109
0.540 0.149 0.000 1.204 0.1143 0.8857 0.0170
0.560 0.100 0.000 0.806 0.2102 0.7898 0.0210
0.580 0.052 0.000 0.405 0.3427 0.6573 0.0178
0.600 0.000 0.000 0.000 0.5000 0.5000 0.0000
0.620 0.000 0.048 -0.412 0.6598 0.3402 0.0163
0.640 0.000 0.100 -0.833 0.7977 0.2023 0.0202
0.660 0.000 0.145 -1.267 0.8974 0.1026 0.0149
0.680 0.000 0.200 - 1.715 0.9568 0.0432 0.0086
0.700 0.000 0.258 - 2.182 0.9854 0.0146 0.0038
0.725 0.000 0.332 -2.800 0.9974 0.0026 0.0009
0.750 0.000 0.418 -3.464 0.9997 0.0003 0.0001

State of I Regrets
Nature

p I r(;'lal) r(p~'a.) I./p~;~ -p~100

80.6: take action al if p :2: 0.6 and action a. otherwise.
We compute (i.'O.6(P, at) = P{ P 2: 0.61 p} by applying the normal cdf to the

number of standard deviations between the mean of II and 0.6. This is given by

(0.6 - p /./ p(l - p)/100.
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Figure 7.5. Regrets, action probabilities, and risks for Example 7.2.
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In Chapter 9 it is shown that the admissible strategies are of the
form Se. In Table 7.3 the action probabilities and risks for the
strategy SO,6 are evaluated.
To compute the action probabilities, we make use of the fact that

p is approximately normally distributed with mean p and standard
deviation Vp(l - p)/100 (see Section 6, Chapter 6, and Exercise
6.45). We illustrate the computation for the row corresponding
to p = 0.66 where p has mean 0.66 and standard deviation
vO.66(0.34)/100 = 0.0474. Then

aso)p, al) = P{p ;::::0.61p = 0.66} .

Then the distance between 0.6 and the mean of p is 0.06 which is
1.267 standard deviations. Thus aso)p, al) = 0.8974and

R(p, SO,6) = (0.8974)(0.000)+ (0.1026)(0.145)= 0.0149.

In Figure 7.5 we compare the action probabilities and the risks for
SO,6 and SO.•,s. Thus it is easy to see that SO,6 is approximately the
minimax risk strategy and has maximum risk slightly larger than
0.02.
Exercise 7.6. Compute the action probabilities and risk function

for strategy SO,61 in Example 7.2. (For convenience, approximate
vp(l-p) by 1/2 for p between 0.25 and 0.75.)
Exercise 7.7. An election is being held for Governor of Phiggins.

Mr. Smith, whose money is invested in stocks would (al) convert
to bonds if he know that the incumbent would be defeated. He
would (a.) stick to stocks if he knew that the incumbent would be
re-elected. Indicate what would seem a reasonable regret function
for Mr. Smith. Indicate a reasonable strategy if he had available
the results of a poll of 400 voters selected at random, and evaluate
the risk function. (The regret functions for this problem are
somewhat unusual in that it is not very important by how many
votes the incumbent wins or loses the election. Assume that the
population of Phiggindian voters is very large and approximate
vp(l - p) by 0.5 for p between 0.2 and 0.8.)
Exercise 7.8. The Bumble Seed Company has found an uniden-

tified barrel of mustard seeds. If the seeds were fresh (01), two-
thirds of them would germinate and the Bumble Seed Company
would desire to (al) market them under its own label. If they were
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one year old (02), only half would germinate and the company would
prefer to (a2) market them under another label. The regrets are
given by

o
18

12
o

A random sample of 50 of the seeds are carefully planted and ob-
served for germination.

(a) Indicate and evaluate risks for three reasonable strategies.
(b) Estimate the minimax risk strategy.

3. ESTIMATION

Example 7.3. When Mr. Good expanded his business, he began
to supply cord not only to parachute manufacturers but also to all
users of cord. Naturally, the value of the cord increases with the
strength of the fibers used. In his new business the batches of
fibers were no longer supplied to him at a fixed price. He had to
make an offer for each batch. Mr. Goodwas no longer faced with the
problem of accepting or rejecting the batch of fibers. His problemhad
become one of deciding how much to offer for the batch. The states
of nature are described by 0, the mean fiber strength, as in Example
7.1. The available actions are now increased from two (accept or
reject) to many. The action is the price offered for the batch. The
regret corresponding to 0 and the price offered are difficult to
evaluate. If the price is too low for the quality, Mr. Lacey may
sell the batch to another manufacturer. If the price is too high,
Mr. Good will not make as much profit as he could. Let us assume
that Mr. Good has made up a table or graph which represents the
price he is willing to offer when he knows O. (See Figure 7.6.) As
o increases, the price increases continuously. Thus, each action
(price offered) corresponds to an estimate of 0 (the mean fiber
strength). For theoretical convenience, it is useful to label the
action not by the price offered but by T, the corresponding value
of O. Now the regrets depend on 0 and T. If our estimate T is
equal to 0, we should have r(O, T) = o. As Tmoves away from 0,
r(O, T) tends to increase.
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Figure 7.7. Mr. Good's regrets in Example 7.3

and approximating parabolas.

Figure 7,6. The price a that Mr. Good is willing to offer if he
knows 9 (Example 7.3).

-- Regret: r(O.1')
--- Approx: c(8)(T- 8)2

400

We indicate in Figure 7.7 Mr. Good's evaluation of 1"(0, T) for
several values of O. We note that, for these curves, reO, T) is ap-
proximated by the following equations.l

reO, T) = 47(T - 0)2 for 0 = 30 and T close to 0

reO, T) = 51(T - 0)2 for 0 = 31 and T close to 0
r( 0, T) = 55(T - 0)2 for 0 = 32 and T close to O.

In general, for T close to 0, reO, T) is approximated by Equation
(7.1).
1 See Exercise 7.9 to see how these equations are arrived at.



CHAPTER 8

Models

1. INTRODUCTION

It is not uncommon for an architect designing a house to build
a model representing his ideas of the house. Customarily the
model is built to scale and is much smaller than the house.
What are the main characteristics of the model that make it de-
sirable? It is relatively cheap to construct and resembles the
house in so many fundamental respects that the architect can
visualize many faults that the house may have and correct them
before putting up the main building.
We must note that even though the model is a useful repre-

sentation of the house, it is far from identical to the house. It is
usually much smaller and lacks many details that the architect
considers relatively unimportant in his design problem.
There are several possible useful ways to represent the house.

The prospective buyer may find a simple outline of the floor plan
sufficiently descriptive to decide whether he will like the house.
Thus the floor plan can also be considered as a model of the house.
The builder finds neither the architect's model nor the floor plan
sufficient. He will often require a detailed list of specifications.
To the layman, this list of specificationsmay look only like a mean-
ingless pile of paper and may in no way resemble the house.
Still, for the builder, it is a more complete and useful representa-
tion of the house than the architect's model.
We shall regard a model as a useful convenient simpl-ijied repre-

sentation of the essentially important aspects of a real object or
situation. In this sense, the architect's model, the floor plan, and
the builder's list of specifications are all models of the house. Not
one of these is a perfect description, but each is adequate for its
special purpose.
In real life situations, we frequently encounter problems that

228
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the mosquitoes would first bite the arm coated with Repel.
(d) Present a 99% confidenceinterval for p.
(e) If you were the scientist, how would you react to the above

result?
(f) To what action would the government employee's strategy

lead when he observes that i> = 0.80?
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For problems which are not very carefully specified, it is often
desirable to estimate the state of nature ()and find some idea of how
good this estimate is. An elegant approach is that of confidence
intervals, where one constructs a random interval I' based on the
data such that, no matter what the value of ()may be,

P{I' covers ()}= r.

I' is called a r confidence interval for (). Commonlyused values of
r include 0.95 and 0.99.
In this chapter we have given up the simplifying assumption of

a finite number of possible states of nature. However, the ideas
developed in Chapters 5 and 6 are still applicable. We have still
neglected, except to a slight extent in our exercises, the problem of
design of experiments.
To help fix some of the ideas of this chapter, we present the fol-

lowing problem.
Exe?'cise 7.23. "Repel" is a new insect repellent. The manufac-

turers claim that it is highly effective against mosquitoes. A repre-
sentative of the Bureau of Standards takes 100men and selects an
arm at random for each man. He coats this arm with Repel and
the other arm with water, which smells like Repel but which is
supposedly ineffective. To assure an honest report, the men are
not told which arm is coated with Repel. They go out at dusk and
report which arm is the first to be bitten by a mosquito, Let f> be
the proportion of people for which the first arm bitten is the one
coated with Repel. Put yourself in the position of a government
employee in the Bureau of Standards. You can either announce
that Repel is practically worthless or let its manufacturer continue
advertising.
(a) What do your regret functions for the two actions look like?
(b) Indicate what seems a reasonable strategy and compute and

graph its risk function. (For convenience, approximate p(l - p)
by 1{4here.)
(c) If this strategy seems to bear improvement, indicate how you

would improve it.
A scientist visiting the Bureau of Standards was mildly interest-

ed in the Repel experiment. When he observed that f> was 0.80, he
constructed a 99% confidence interval for p, the probability that
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aH and one is inclined to worry about taking action al• As long as
there are only two actions to take and no possibility of accumulat-
ing additional data, the statistician should take the appropriate
action. In many cases, the situation is not quite so simple or des-
perate. For example, there may be other actions available. In the
butler's case, one might consider conviction with a recommendation
of a five-year jail sentence. Then the jury would be hedging against
the possibility of making a bad mistake by taking an action which
is not especially good if the butler is innocent or if he is guilty.

7. SUMMARY

In this chapter we have considered some very simple examples of
the type of problem that statisticians ordinarily treat. There were
examples in testing hypotheses. Characteristically, in such prob-
lems, there are two possible actions, each of which is appropriate
for certain states of nature. In Example 7.1, taking action al is
equivalent to acting as though 0 > 31.0 and is, therefore, identified
with accepting the hypothesis 0 > 31.0.

The risk function R(O, 8) is given by

R(0,8) = a.(O, al) r(O, al) + as(O, a.) r(O, a.) = e(O, 8) r(O)

where as(O, al) and as(O, a.) are the action probabilities for strategy
8 and add up to one; r(O) is the regret corresponding to the wrong
action for 0; and e(O,8), the error probability, is the corresponding
action probability. Since as(O, aJ + a,(O, aJ = 1 and e(O,aj) =
as(O, al) or as(O,a.), anyone of as(O, al) or as(O, a.) or e(O,8) can be
used to describe the action probabilities for 8.

Examples in estimation are characterized by a continuous range
of possible actions. Here, again, each possible action is appropriate
for some state of nature and can be identified with an estimate T
of O. If the regrets are approximated by

7'(0, T) = c(O)(T - 0)",

it is desirable to find an estimator t, yielding an estimate

T = t(Z)
such that

R(O, t) = c(O) E(T - 0)'

tends to be small.
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We now compute the a posteriori probabilities and the appro-
priate Bayes action in Table 7.4.

TABLE 7.4

A POSTERIORI PROBABILITIES AND BAYES ACTION FOR EXAMPLE 7.7

f(ZI8) 10

(Murder) 81 I 0.001764 0.5 u'd(Z 181) 0.000882

(Suicide) 82 0.000408 0.5 w2/(ZI82) 0.000204

feZ) 0.001086

r(8, a)
al (Convict) a2 (Acquit)

81 0 WI

~82 4 0 W2 0.188

B(w, a) 0.752 0.812

Bayes action = al (convict)
Bayes risk =.fij (w) = 0.752

If this example were to be treated from a non-Bayesian point of
view, it would be necessary to list various strategies for compari-
son. But it would be impossible to specify a strategy, for this would
require considering all possible circumstances of any kind which
would have aroused the suspicion of the police. Among other items,
we would have to consider how we would react if Mr. White had
been found dead of arsenic poisoning in his garden or drowned in
his bathtub, etc. It is simply unmanageable to consider all possible
varieties of circumstances and, worse, to compute the appropriate
probabilities.
It should be admitted that in the above example the a priori

probability of 1/2 was obtained in a somewhat mysterious fashion.
In more classical statistical problems, it often occurs that the exact
value of the original a priori probability is not too important, for
usually there is a considerable amount of data available, and the
conclusion would not depend strongly on w. In the above example,
the conclusion depended very heavily on the value of the a priori
probability and the regrets. There B(w, al) and B(w, a.) were very
close to one another. Occasionally, in statistical problems, one finds
that w is "very close" to the boundary of the set leading to action
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had been murdered by the butler ({},),the probability of his being
stabbed, would be 1/5.

Let us abbreviate the relevant data as follows.'

E,: Mr. White was stabbed to death.
E,: There was exactly one knife wound.
E3: The knife wound was in the right part of the chest.
E.: The knife was left in the body.
E5: Mr. White was wearing his jacket.
E6: Mr. White was in his room.
E7: Mr. White was lying on his bed.

Consider the hypothesis of murder:2

P{E11{},} = 0.2, P{E,IE]o {},} = 0.3, P{E3IE" E2, {}1} = 0.6,
P{E, IE" E" E3, {}I} = 0.5, P{EoIE" E., E3, E" {}I} = 0.7,

P{E6IE" E., E3, E" Eo, {}1} = 0.7,
P{E7IE]o E" E3, E" Eo, E6, {},} = 0.2.

Under the hypothesis of suicide ({},),we have

P{E11 {},} = 0.1, P{E21 E" {},} = 0.9, P{E31 E" E" {},} = 0.07,
P{E, IE" E" E3, {},} = 0.9, P{E5IE" E., E3, E" {},} = 0.2,

P{E6IE]o E., E3, E" Eo, {},} = 0.9,
P{E7IE" E., E" EI, Eo, E6, {},} = 0.4.

Hence, if Z constitutes the entirety of all 6 pieces of information,

P{ ZI {},} = 0.001764 and P{Z I{},} = 0.000408.

The jury has available two actions. These are al (convict the butler)
and a, (acquit the butler). From society's point of view, it is worse
to convict an innocent man than to acquit a guilty one. Suppose that
the regrets corresponding to the two errors are 4 and 1 respectively.

On the basis of the evidence concerning the motivations and cir-
cumstances of Mr. White's household, it seems reasonable to the
court to assume that the a priori probability (prior to the conside-
ration of E" E" ... , E6) of H, is about 0.5.

1 As the reader may be aware, the example and probabilities are somewhat
fabricated.

2 The notation P{E3IEI,E,,6d represents P{E3IEI and E2} when 61 is the
state of nature and is often read "the probability of E3 given EI, E2, and 61."
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and available, one should apply the Bayes strategy. This is possible
since the action determined by the Bayes strategy depends only on
the regrets, a priori probabilities, and the data actually observed.
One need not consider the entire set of possible observations to
obtain the appropriate action. In a manner of speaking, we need
cross only the bridges we cometo. We illustrate with Example 7.7.
Example 7.7. A butler is suspected of having murdered his em-

ployer, Mr. White, whose will left a good deal of money to the
butler. Mr. White was found lying on his bed with his suit jacket
on and a knife in the right part of his chest. From additional in-
formation, it is clear that either the butler murdered Mr. White or
that Mr. White committed suicide. The famous criminologist, Mr.
Black, explains that, among suicides, only 10%kill themselves with
a knife. Only 20% commit suicide while wearing a jacket. Finally,
among those who kill themselves with a knife, only 7% insert the
knife in the right part of the chest. Hence, argues Mr. Black, the
probability of suicide is only (0.10)(0.20)(0.07)= 0.0014 and the
butler is surely guilty.
Mr. White's lawyer points out that Mr. Black has forgotten that

the dead man weighed 235lb and had red hair, and only 1/100of 1%
of all people weigh 235 lb and have red hair. With .these some-
what irrelevent data, we could make the "probability of suicide"
0.00000014. We could, if we wanted, make this probability arbi-
trarily small. Similarly, we couldmake the "probability of murder"
pretty small and prove that most likely Mr. White is not really
dead.
What was wrong with Mr. Black's argument? First, he was not

computing the probability of suicide. He was computing the pro-
bability of obtaining these data if Mr. White had committed suicide.
Suicide is a possible state of nature or cause of death and not a pos-
sible observation here. Technically, this probability is called the
likelilwod of suicide (in view of the above data). Secondly, when
he multiplied probabilities, he assumed that for suicides the use of
a knife and keeping the jacket on are independent. Are they? In
any case, we shall see that Mr. Black should compare the likelilwod
of murder with that of suicide. That is, he must also compute the
probability of obtaining these data if Mr. White had been murdered.
After a good deal of questioning, it is determined that, if Mr. White
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between white and black, exceeds 1{2.For each problem he has ac-
cumulated 1000observations. In which case should he use a lower
significance level? Why?
Exercise 7.18. A biologist is involved in two experiments con-

cerning the lengths of mouse tails. In one he compares males and
females. In the second he compares ordinary mice with mice whose
parents' tails had been cut off. Specify the null hypotheses for
the two problems in terms of mean tail lengths. Given the same
number of observations in each experiment, which calls for a lower
significance level? Why?
Exercise 7.19. Derive 0.01 significance level tests for Examples

7.5 and 7.6. Present a 20% significance level test for the teacher
who suspects his students of falsifying the data.
Exercise 7.20. For Example 7.1, present a 0.05 significance level

test of the hypothesis that the cord is satisfactory, i.e., state the
null hypothesis H: 0 = 32 and reject if the evidence indicates that
the cord is unsatisfactory.
Exercise 7.21. Mr. Brown does very poorly in a preliminary ESP

experiment. He claims that on some days he has negative ESP and
p < 0.5. How should the next day's experiment be analyzed?
Exercise 7.22. State a 0.01 significance level test of H: p = 0.2

based on 400observations where rejection is desired if p is far from
0.2 in either direction.

The scientist who publishes the results of his experiments may
feel that other interested scientists with different regret functions
are entitled to more information than a statement that a 0.05 sig-
nificance level test led to the rejection of the null hypothesis. In
this case, we recommend the use of a confidence interval as a
supplementary description which is often helpful.

t6. A DECISION MAKING PROBLEM WHERE COMMON
STATISTICAL PROCEDURES DO NOT APPLY

Customarily, statisticians select a strategy by proposing reason-
able strategies, comparing their risks, and selecting a strategy for
which the risks are "small." Sometimes problems arise where it
is impractical even to describe a strategy, simply because there is
a tremendous variety of possible observations which cannot all be
considered. If, in such cases, a priori probabilities are relevant
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The emphasis in this kind of application is on the question: Is an
effect real?
Example 7.6 is of the type where we are interested in whether

an effect is large. By setting a strict significance level, one ensures
that, if no effect is present, one is very likely to accept the null
hypothesis of no effect-and if an effect is small, one is still likely
to conclude "no effect." Only a large effect will give high proba-
bility of rejecting H. Thus, if one compares a new process with an
established process, or an expensive material with a cheap material,
one may set up the null hypothesis that the established (or cheap)
material is as good as the other, and then set a strict (small) signi-
ficance level. This has the effect of making it likely that the
established (or cheap) material will be regarded as equal to its com-
petitor unless the competitor is much better.
In Example 7.6, no one believes H-that a real coin is perfectly

well balanced. On the basis of 10,000observations, the 0.05 signifi-
cance level test is very likely to reject H if p = 0.485, where it
would be preferable to accept the coin. Because the sample size is
large, a much stricter significance level is called for. In fact, for
large samples, the procedure which accepts H so long as 0.48 ::;;p
::;;0.52 would be quite reasonable. Here a result p = 0.485 would
sometimes be called statistically significant evidence against H:
p = 1/2, but also evidence that the difference between p and 1/2 is
not of practical significance.
In review, significance testing is a convenient method often ap-

plied to problems where it is of interest to find out whether an
effect is real or large. The null hypothesis denies (nullifies) this
effect. The appropriate choice of a represents a compromise be-
tween the probability of rejecting H when it is true (or when the
effect is small) and the probability of accepting H when it is false
(or when the effect is large). If a large sample is available, a small
a is called for. If very few observations are available, a large a
may be necessary.

Exercise 7.17. A psychologist is interested in two problems.
First he wants to know if Mr. Brown has ESP and, consequently,
has probability p > 1/2 of guessing the color of a card selected at
random from a deck of cards. Second, he wants to know if the
proportion of women who prefer a white dress, when given a choice
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0.5), the test is easily derived for any specified significance level
a. This test will depend only on Hand a. For instance, the 0.05
significance level test which consists of rejecting H if P is too large
is derived as follows. Under the hypothesis H: p = 1/2, P is approxi-
mately normally distributed with mean 0.5 and standard deviation
V'(0.5)(0.5)/10,000 = 0.005. Thus we reject H if P exceeds 0.5 by
1.645 standard deviations, i.e., if p > 0.5082.

However one difficulty remains. What is an appropriate signifi-
cance level? Again, the answer depends upon the nature of the
regrets.

We illustrate with the following two examples.
Example 7.5. A psychologist is studying Mr. Brown who claims

to have ESP and, consequently, the ability to predict the color of a
card selected at random from a deck with probability p > 0.5. If he
had no ESP, p would be equal to 0.5. The experiment consists of
10,000trials.
Example 7.6. Mr. Sharp wants to check whether a coin is suffi-

ciently well balanced to be used as a gambling device in his casino.
Because of favorable odds, he considers the coin as adequate so
long as the probability of heads, p, lies between 0.48and 0.52. The
experiment consists of 10,000tosses.

In both of these examples, the significance testing method calls
for specifying the null hypothesis H: p = 0.5 although, in the
second example, a more realistic formulation would involve the
hypothesis H*: 0.48 ::;;p ::;;0.52. The first, (Example 7.5), typifies
the situation in scientific research where rejecting the hypothesis
involves announcing a new "fact" or "effect" (e.g., existence of
ESP). Such an announcement, if false, can lead to much waste of
time and effort and, worse, may introduce confusion into the
development of knowledge. Also, it is very embarrassing to the
scientist who makes the announcement of an untrue "fact." The
significance test controls the probability of such errors by setting
up a null hypothesis which means "this effect does not exist."
Only if the evidence is extremely unlikely under that hypothesis
do we reject H and conclude that the effect does exist. A very strict
(small) significance level is called for to give protection against the
error of incorrectly rejecting the hypothesis-but at the cost of
making it difficult to demonstrate new "facts" when they are true.
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a sort very unlikely to occur if the hypothesis is true, i.e., if the
sample falls in a region, called the rejection region, which has small
probability under the hypothesis. Then the data are considered to
be "significant" evidence against the hypothesis.
In this formulation, the regrets and, incidentally, the alternative

hypothesis, are not explicitly taken into account. These gaps have
resulted in confusion concerning what constituted a reasonable
rejection region. For example, consider the four following tests of
the hypothesis H that a probability p is equal to 1(2. For each of
these tests based on 10,000observations, the probability of reject-
ing H if it is true (called the significance level of the test) is 0.05.
These are: (1) Reject if p > 0.5082; (2) reject if p < 0.4918; (3)
reject if If> - 0.51 > 0.0098; and (4) reject if 1P - 0.51 ::;;0.0003.
Which of these tests should be prefered?
This question can only be answered by considering the regrets

and those states of nature for which it is important to reject the
hypothesis. For example, Test 1 would be appropriate for investi-
gating someone's claims of having extra sensory perception (ESP)
and having probability p > 0.5 of predicting the color of a card
selected at random. If, as he claimed, p> 0.5, p would tend to be
large, thus large values of f> should lead to rejecting the null hy-
pothesis H: p = 0.5 (he has no ability to guess colors). On the
other hand, Test 3 would be appropriate for Mr. Sharp who wants
to know if a coin is sufficiently well balanced to be used in his
gambling casino. Here, Mr. Sharp would like to reject H: p = 1(2
(the coin is well balanced) if p is much larger or much smaller than
0.5. Then both very small and very large values of f> may be
taken as evidence of unbalance and lead to rejecting H. Similarly,
Test 4 would be appropriate for the statistics instructor who
suspects that his students have been falsifying the data so as to
give the impression of a well-balanced coin.
Thus, we repeat, a rational use of the method of significance

testing requires contemplation of the underlying decision making
problem and, in particular, those states of nature for which rejec-
tion is highly desirable.
An important advantage of the method of significance testing is

the following. Once we have decided on the nature of the rejection
criterion (e.g., reject if p is too large, or reject if p is too far from
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interval for 0 is (63.04, 66.96) which indicates fibers of extremely
high strength. A reasonable manufacturer, scientist, or statistician
would be very strongly tempted to reformulate the problem.
Mr. Good might now wish to consider the possibility of (<l:J), making
twice as much cord from a single batch of fibers. The scientist
might consider the possible action aJ (investigate in what way the
production of this batch differed from that of past batches). The
statistician might even consider checking whether the laboratory
technician had been intoxicated. A confidence interval is often
useful in giving a good idea of the neighborhood in which 0 lies so
that the decision maker can formulate an appropriate problem
without too complicated a set of actions.
Exercise 7.14. What is the 99% confidence interval for 0 in Ex-

ample 7.1 when O"x = 8 and n = 64?
Exercise 7.15. What is the 99% confidence interval for 0 in Ex-

ample 7.1 when O"x is unknown, Sx = 7, and n = 9?
Exercise 7.16. The proportion of the population of prospective

voters favoring candidate A is p. A polling company has taken a
random sample of 10,000 of the large population of prospective
voters and finds the proportion p, of the sample, favoring A. We
know that p is approximately normally distributed with mean p

and standard deviation O"p = v'[p(l - p)]/n. What is an approxi-
mate 95% confidence interval for p? Evaluate the interval for
p = 0.3, 0.4, 0.5. Hint: Assume n is large, as in Case 2, and
approximate O"p by 1/[p(l - p)]/n.

t5. SIGNIFICANCE TESTING

The most commonly used methods of statistics have a relatively
short history of use. Nevertheless, most of them antedate the
decision making formulation of statistics. At the time of their
development, the formulation of the problem of hypothesis testing
was incomplete, and considerable confusion resulted. However, the
technique of significance testing which developed is well established,
convenient, and also useful so long as the underlying decision mak-
ing problem is carefully kept in mind.

In a test of significance, we typically consider a hypothesis speci-
fying the value of a parameter. This hypothesis, often called the
null hypothesis, is to be rejected if the sample turns out to be of
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probability that it will be covered by r is 0.95.
CASE2. <Txunknown, n large.
Here the interval r is closely approximated by

r* = (X - 1.~~x , X + 1.~?~ )

since, for large n, Sxtends to be close to <Tx.
CASE3. <Txunknown, n not large (say 10).
If n is small, p{r* contains O} is no longer equal to or very close

to 0.95. In Case 1, the 1.96 was derived from the fact that

{IX - 01 }p <Tx/v n < 1.96 = 0.95.

If (X - O)/(<Tx/vn) is replaced by (X - O)/(sxvn), the probability
distribution is modified. The fact is that the distribution of

has been catalogued as the t distribution with (n - 1) degrees of
freedom (See Appendix D.)l. Hence, if n = 10, we should apply

{ X-O }P - 2.262 < sx/v10 < 2.262 = 0.95

which gives

r** = (x: - 2.262;~0' X + 2.262;~0)'

Note that the uncertainty about <Txhas led to replacing <Txby Sx
and to increasing the multiplier from 1.96 to 2.262. From Appendix
D. we see that, as n increases, the multiplier of sx/-vn decreases
to 1.96. In Chapter 10 we shall indicate a general method of
obtaining confidence intervals.
To illustrate another important role of confidence intervals, sup-

pose that in Example 7.1Mr. Goodobserved X = 65. Then accord-
ing to his strategy he would undoubtedly accept the batch. Pre-
sumably this would be the end of the problem. However, if Mr.
Goodwere at all imaginative, he might note that a 95% confidence
1 This fact depends on the normality of the observations.
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A more convenient method of indicating the reliability of an es-
timate is that of confidence intervals. For large samples, this
method does not yield any results which differ essentially from
those obtained by a simple estimate of the standard deviation of
the estimate. For small and medium size samples, this method is
often mathematically elegant and convenient to apply. Although
confidence intervals playa somewhat obscure role in decision mak-
ing problems, it appears that scientists often find them useful as
devices of description, or inference, in complicated problems where
it is difficult to specify actions, states of nature, and regrets. A
confidence interval r = qZ) is a selected range of possible values
for a parameter, which, the statistician asserts, actually does con-
tain the parameter. The method of confidence intervals provides
two things:

1. A "recipe" for constructing the "selected range" (interval)
from any given set of data.

2. A value for the probability that the method leads to an
interval which actually succeeds in bracketing (or covering, or
containing) the unknown parameter.

The usual method of constructing such sets is closely associated
with the problem of testing hypotheses.

We illustrate the confidence interval approach in several varia-
tions of the cord problem (see Examples 7.1 and 7.3).

CASE 1. o-x known.
Here we have O-j( = o-x/ ~/n. Thus

P{ - 1.96o-x/v'n < X - (J < 1.96o-x/v'n) = 0.95.

That is to say that X is within 1.96o-x/vn of (J with probability
0.95 or that the random interval'

r = (X - 1.~6~x , X + 1.~~x)

will contain (J with probability 0.95. For this particular outcome of
the experiment, X = 31.97 and o-x/vn = 1, and Mr. Good may
state: "Withconfidence95'7b, the interval (30.01, 33.93) covers (J."
The reader should note that no matter what the value of (J, the

1 We often designate by (0, b) the interval from a to b, ie., {x: a < x < b}.



214 ELEMENT ARY DECISION THEORY

4. CONFIDENCE INTERVALS

In Chapters 1 through 6, we studied decisionmaking by compar-
ing strategies on the basis of their risks and without considering
any intuitive reasons for preferring one strategy over others. Thus,
in Example 1.1, the contrary man's strategy was treated without
discrimination until it was seen to be dominated.
Shouldwe not be able to lookat the contrary man's strategy and

reject it outright? Roughly speaking, what constitute reasonable
strategies for the busy man who does not have time to formulate
the problem in complete detail and compare all strategies? This
question is especially important for scientists whomust plan future
experiments without the possibility of complete analysis of risks
for all strategies. A rough answer is that reasonable strategies use
the data to estimate the state of nature (). If the estimate is very
good, one acts as though the estimate were (). If the estimate is
rather poor, one tends to hedge accordingly.
Thus in Example 5.1, the strategy 86 = (ah a" a3) may be inter-

preted as follows. The observation "fair" is strong evidence in
favor of (}l' and we take action a1 (wear ordinary suit). Similarly,
the observation" foul" is strong evidence in favor of ()., and we
take action ~ (wear complete rain outfit). But the observation
"dubious" is inconclusive and, to prevent the disaster of guessing
wrong, we take action a, which is not very bad (but not optimal)
for either (). In other words, we hedge. Thus it is important to
estimate ()and to measure how good this estimate is.
In Example 7.3 we know that X is normally distributed with

mean ()and standard deviation one. Here the standard deviation of
the estimate is a good measure of the inexactness of the estimate.
But suppose we consider the modificationof this example where <Tx,

the standard deviation of the Xl' is not known. Then the standard
deviation of X is <TXrVn, which is not known. It is true that we
can estimate <Tx also, but then we would have to worry about how
good is our estimate of the standard deviation of our estimate.
Although this problem is not at all serious for large samples, it can,
for small samples, lead to estimates of standard deviations of esti-
mates of standard deviation of estimates ... of estimates, which is
plainly a nuisance. This is especially painful when the estimate is
not normally distributed.
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heard the commercial is p. The market research firm uses p as the
estimate of p.

Thus the action is to report an estimate of p. The firm's strategy
is to use p as the value of the estimate. The action probabilities
are the probabilities with w:hichp takes on the possible values 0.00,
0.01, 0.02, """, 0.99, 1.00. The action probabilities can be summa-
rized by the remark that p is approximately normally distributed
with mean p and variance p(l - p)/100.

Suppose the regret is given by r(p, T) = (T - p)'/p(l - p). Then,
since E[(p - p)'] = p(l - p)/100, we have risk

R(p) = p(l - p)/100 = 0.01.
p(l - p)

It is interesting that, for the above regret function, R(p) is constant.
EXe1"cise 7.10. If, in Example 7.4, r(p, T) = (T - pf, evaluate

and graph the risk function for using p based on a sample of 400.
Exercise 7.11. For Example 7.4, we define the estimators t1 and

t2 by tj(Z) = T1 = 0.5p -t 0.25 and t2(Z) = T, equal the proportion
of the first 50 people sampled who heard the commercial. Indicate
the action probabilities and compute and graph the risk functions
for t1 and t2• Is there any value of p for which t1 is better than t
(which consists of using p)?
Exercise 7.12. The pulling strength of a randomly selected South

Phiggindian is approximately normally distributed with mean 0 and
standard deviation 100 lb. A team of 100randomly selected South
Phiggindians barely manage to pull a weight W. Estimate O.
What is the probability distribution of the estimate?
Exercise 7.18. It is desired to estimate the systematic error 0

(at 10,000yards) of an optical range finder. The regret is given by
14(T - 0)2. Let X be the average of N independent observations,
each of which has mean 10,000+ 0 and variance 12.

(a) What is the risk based on the use of T =X - 10,000?
(b) Graph this risk as a function of the sample size N.
(c) If each observation costs one unit, determine an optimal

sample size by graphing risk plus cost of sampling as a function of
N.
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Figure 7.10. Probability p(6,a) that Mr. Lacey will accept offer
of a for the batch.

and Mr. Good has to revert to his other supplier). Since $1000 is
a relatively small amount in this big business, we shall assume that
utility is proportional to dollars. In Figure 7.11, we graph the ex-
pected profit against the offered price for given values of (). Check
a few points on the curves of Figure 7.11. Check a few points on
the curves of Figure 7.6 which yield the price that should be offered
if () is known. If T is an estimate of (), we act as though T were ()
and offer the price that would then be appropriate. Now check a
few points on the curves representing r«(}, T).

400

300.,
~200
::l

100

0.2 0.4 1.0

Figure 7.11. Expected profit u(6,a) if price a is offered for batch.
u(6,a) =p(6,a)[f(6) - a) + [1- p(6,a))(250).

Example 7.4. A market research firm is asked to determine what
proportion p of New York families owning television sets heard a
certain commercial. The firm has a random sample of 100 families
owning television sets (the population of New York families owning
television sets is very large). The proportion of the sample who
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discard this estimator, since there are other estimators that are
almost certain to give estimates close to 0 if the sample size is large,
and this can not be said about tao

We remark that in many, and perhaps most, examples the regret
function can be approximated by c(O)(T - 0)2. Then the most
important aspects of the action probabilities of an estimator are
summarized by

(7.4) E[(T - 0)2] = 0"1- + [E(T) - 0]2.

In other words, for comparing two estimators, the values of
E[(T - 0)2] for these two estimators are more important than a very
precise knowledge of the actual regret function or of c(O).

Exercise 7.9. This exercise is to illustrate how one could compute
the regret function for Mr. Good's problem if it were very impor-
tant to do so. We suppose that Mr. Good has a supplier of fibers
whose material and price are very stable and such that Mr. Goodcan
be assured of $250profit by using this supplier's fibers. The batch
brought by Mr. Lacey might yield a greater profit. On the other
hand, if he overpays, he might not do so well. Let us suppose if
Mr. Gooduses Mr. Lacey's batch, his profit will be [f(O) - a] where

2000

f(O)

1000

o
25 30 35

o
Figure 7.9. Gross income fie) for batch with mean e in the cord
problem (Example 7.3.). (Profit =fee) - a, where a is the price paid

for the batch.)

a is the price he pays for the batch (see Figure 7.9). If he offers
a dollars, the probability that Mr. Lacey will agree to accept is
p(O, a), as given in Figure 7.10. Thus Mr. Good either (1) profits
by f(O) - a with probability p(O, a) (if Mr. Lacey accepts) or (2)
profits by $250 with probability 1 - p(O, a) (if Mr. Lacey refuses,
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25 27 35
()

Figure 7.8. The risks R(e, t) and E[(T - e)2) for three strategies
in Example 7.3. R(e, t) = c(e) E[(T - e)2).

In this particular problemwhere the observations are assumed to
be normally and independently distributed, t1 (sample mean) has
several good properties whichmake it desirable and commonly used.
Notice that R(O, t1) < R({}, t2) for all 0, and thus the sample median
estimator is dominated. On the other hand, the rather "foolish"
estimator t3 is admissible, even though it ignores the data, because
it cannot be improved if 0 = 30. However, statisticians usually
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r(O, T) = c(O)(T - 0)2

where c(O) depends on O. (See Figure 7.7.)
Mr. Good still performs the same experiment of measuring the

breaking strengths of 64 fibers randomly selected from the batch.
Mr. Good's strategy must assign an action or estimate to each

possible sample Z = (XII X••••• , X6.). We call such a strategy an
estimator and denote it by t instead of the usuals. Since a strategy
is a function on the set of possible data to the set of possible actions,
an estimator is a function on the set of possible Z to the set of
possible estimates of O. The actual estimate T is denoted by:

(7.2) T = t(Z) .

Let us consider three simple estimators. These are til t•• and t3,
given by

t,(Z) = T, = X
t.(Z) = T2 = X = sample median
t3(Z) = T3 = 30.

Let us examine the properties (action probabilities and risks) of
these three estimators. Estimator t1 yields an estimate X which is
normally distributed with mean 0 and variance ui = u~/64 = 1.
The corresponding risk is given by

R(O, t1) = E[c(O)(X - 0)2] = c(O) E[(X - 0)2] = c(O).

Estimator t2 yields X which mathematicians have shown to be ap-
proximately normally distributed with mean 0 and variance u:-x
= 1.57u~/64 = 1.57. Then

R(O, t2) = E[c(O)(X - 0)'] = c(O) E[(X - 0)2] = 1.57c(0).

Estimator t3 yields T3 = 30 which is a fixed number. This estimator
ignores the data and corresponds to a guess. Here we have

R(O, t3) = c(0)(30 - 0)'.

These three risk functions are compared in Figure 7.8. More gen-
erally, we have for any estimator t yielding the estimate

(7.3)
T = t(Z)

R(O, t) = c(O) E[(T - 0)2].
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can be treated only after simplifying them by eliminating many
apparently minor aspects. The parent who wishes to divide four
apples equally between her two children may tacitly assume that
the apples are equal and give two to each. The statement" all
the apples are equal" is never precisely correct but it may be
sufficiently close to correct to make a useful model.
In the application of statistical ideas to real problems, it is neces-

sary to represent a problem in a simplified form or model, to solve
the corresponding model by the appropriate computations, and to
convert the solution into the action it represents. The form of the
model we have used in this book is one in which there is is a set
representing the possible actions, a set representing the possible
states of nature, a loss or regret function, a set representing the
possible observations resulting from the experiment, a probability
distribution on this set for each possible state of nature, a set re-
presenting the possible strategies, a risk function, and, finally,
some criterion for selecting among the strategies on the basis of
the risk functions. Thus the model of the problem consists in part
of models of various aspects (actions, losses, etc.) of the problem.
The practical solution of the problem requires the construction of
an adequate model, the computation of the solution of the model,
and the transformation of this solution to real action.
How do we know when a model is adequate? Often there are

clear-cut signs when the model is inadequate. Two such signs are
ridiculous answers and failure of the solution. Sometimes there
are no clear signs available before applying the solution. There
does not seem to be a well-developed theory on this problem, and
the task of constructing adequate workable models seems to be a
major aspect of the "art" in the various sciences. In this chapter
we shall discuss models of aspects of decision making. The ob-
jective is to give some ideas of effective model building and to
acquaint the student with a few of the simpler and more useful
models commonly used in the practice of statistics.
In the earlier chapters, highly artificial examples have often

been used. It was thus possible to shun problems of realism in the
models and to focus attention on the features illustrative of the
topics under discussion.
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2. MODELS OF PROBABILITY AND UTILITY

Throughout this book, probability and utility considerations play
a primary role. Many examples of considerable depth and im-
portance have been studied. However, we shall find it more con-
venient to illustrate our building of a probability modelwith a more
trivial case that is not of great obvious practical importance.
We return to the problem where the experiment consists of tos-

sing a nickel and a penny, and we are interested in the number of
heads. To apply the probability model, we make the following
simplifying assumptions about reality. First, we assume that
there are only four possible outcomes; i.e., both coins fall heads,
the nickel falls heads and the penny falls tails, etc. It is assumed
that we need not worry about a coin falling in a crack and standing
on end and that we are not interested in such extraneous aspects
as the direction in which the face of the coin points. Second, we
assume that, if the experiment were repeated under "similar
circumstances" many many times, the frequencies of the four
possible outcomes would tend to be close to certain specificnumbers
called "long-run relative frequencies."
The probability model corresponding to the above simplified

assumptions is a mathematical entity. It is described by the set
% = {(H, H), (H, T), (T, H), (T, T)} and a probability function P
defined on the subsets E of ,'i{'. To qualify as a probability func-
tion, P must satisfy the five probability properties described in
Section 3, Chapter 4. Notice that these properties involve only %
and P and do not make any reference. to reality.
The following is a trivial application of the model. First, the

elements of % are related to the concrete possible outcomes in the
obvious way, and P is related to the long-run relative frequency.
Then, if it were known that two heads fall 20% of the time and
two tails 40% of the time (in the long run), one may translate to
the model as follows: P{(H, H)} = 0.2, P{(T, T)} = 0.4. Using
the model, we easily derive P{(H, T), (T, H)} = 0.4. Returning to
the concrete application, we may feel assured that the long-run
relative frequency of exactly one head is 40%.
Nontrivial applications of probability such as the approximate

normality of p may be obtained by using the notion of independence
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which is a mathematical term defined by reference to the proba-
bility model. Thus, two subsets of %, A and B, are defined to
be independent if P{A and B} = P{A} P{B}. What assumptions
about reality correspond to the independence of A and B? In the
two-coin problem, it is difficult to conceive of some common causal
factor which simultaneously affects and tends to relate the out-
comes of both coins. If we assume that there is no such factor,
we translate this assumption about "concrete reality" to our
model by stating that {(H, H), (H, T)} (which corresponds to the
nickel falling heads) and {(H, H), ('1', H)} (which corresponds to
the penny falling heads) are independent.
In applications of probability theory, it is very natural to use a

given term to indicate both a concept in the model and one in "con-
crete reality." For example, we use probability to represent
the function P and long-run relative frequency. Such double usage
is common and convenient, but occasionally leads to confusion.
At times it is important to separate the model from reality.
A careful analysis of utility requires a mathematical model

translating the assumptions of Section 2.1, Chapter 4. A detailed
translation would be quite tedious to indicate at this point. Such
a translation would be necessary to permit a complete and formal
derivation of the utility function properties. Such a derivation
appears in Theory of Games and Economic Behavior by Von
Neumann and Morgenstern but is beyond the scope of this book.
Consequently, we shall not delve into the mathematical model of
utility.

3. MODELS OF THE SET OF AVAILABLE ACTIONS

To illustrate how we build and use models of the set of available
actions let us re-examine Example 7.1. Imagine that, when the
batch of fibers arrives, Mr. Goodcan think of only the following
actions:
1. Accept the batch at Mr. Lacey's usual price and make para-

chute cord as usual.
2. Reject the batch and rent out his factory for the week re-

quired to receive a new batch.
3. Offer Mr. Lacey a price lower than the usual price for the

batch.
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4. Accept the batch at the usual price and readjust the machines
to make cord with more or fewer strands of fiber than usual in a
given length of cord.
With a little thought Mr. Good decides that, if he tried to offer

a lower price, Mr. Lacey would probably be upset and his entire
business relationship with Mr. Lacey would be disturbed at great
financial loss to himself. Mr. Good rejects this possibility.
Readjusting the machines to use fewer strands of fiber is a very

delicate and expensive operation and not worth considering unless
the strands were extremely strong (0 > 50 or so). On the basis of
previous experience, Mr. Goodsees no reason to expect such strong
strands.
Thus Mr. Good feels that only the two actions described in (1)

and (2) need be considered, and he proposes to solve the model set
up in Example 7.1 with only two available actions.
Notice how we built this model where the set of possible actions

consisted of al (also named" accept the batch") and a, (also named
"reject the batch "). We essentially considered a decision making
problem which was more complex with four types of actions. This
complex problem was never completely formulated. It too was a
rough preliminary model of the still more complicated real situa-
tion, for, obviously, one could conceive of still more actions. A
rough analysis of this problem seemed to indicate that the simpler
model was appropriate. An attempt to formulate this more com-
plicated model in a clearer fashion and to solve it precisely would,
of course, have been very difficult.
The reader may recall how in the discussion of confidenceinter-

vals we hypothesized the data X = 65 yielding a 95% confidence
interval (63.04, 66.96). Such a confidence interval would lead a
flexible Mr. Good to reconsider the discussion of the fourth type of
action (readjusting the machine).
It is important to note that statisticians are rightly suspicious of

such reconsiderations. Without scrupulous care, it is easy for a
statistician to get into a habit of carelessly re-evaluating his model
in view of the data. Such a habit may reduce his behavior from
objective decision making to subjective wishful thinking and
vitiate completely his evaluation of risks.l

1 This statement is partly due to the fact that any large set of data has certain



MODELS 233
In Example 7.3, we used a model where each state of nature 8

determined an appropriate action (the optimal price to offer) and
each price was appropriate for some 8. Here our model of the set
of available actions was the set of possible prices. For technical
reasons,. we found it more convenient to translate this model to an
essentially equivalent model where each price was labeled by the
8 for which it was appropriate. In our translated model, the set
of available actions is exactly the same as the set of possible states
of nature, and each action is labeled by a number T called" the
estimate of 8." (By taking action T, we mean that Mr. Good offers
the price which would be optimal if 8were equal to T.) The techni-
cal advantage of this model is that we can often approximate
r(8, T) by a simple expression.

4. MODELS OF SETS OF POSSIBLE STATES OF NATURE

We illustrate with two models of the sets of possible states of
nature. In Example 7.1 we represented the state of nature by the
following model: Individual fibers in the batch have breaking
strengths which are independently and normally distributed with
mean 8 and standard deviation 8. The set of possible states of
nature corresponds to the set of positive numbers 8.
Clearly this model is not completely realistic. First of all, any

normally distributed random variable can be negative with some
probability. Thus breaking strengths, which are always positive,
cannot be strictly normally distributed. The assumption of nor-
mality is relatively serious but, unfortunately, we cannot discuss
the effects of deviations from normality here. Second, the as-
sumption that (j is known to be 8 would be preposterous without
a good deal of previous experience. The use of the estimate s in
place of (j is a useful technique which is easy to apply. Our assump-
tion that (j was known was made in the interest of simplifying the
elementary discussion of Example 7.1.
A second model which is used in practice is obtained as follows:

Suppose that before an election a public opinion research com-
peculiarities which one may not have expected. For example, in the first 11 pairs
of random digits in the table of random digits (Appendix el), the second element
of the pair is a 3 or 6, 8 times out of 11. This is a very peculiar phenomenon,
but we should ignore it unless (1) we have some sound reason, based on our rough
preliminary model, for suspicion that our table may tend to exhibit such a pheno-
menon or (2) considerable additional data exhibit this phenomenon.
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pany wishes to determine who will win the election, the Whigs or
the Populists. In order to do so, they assume that:

1. Each prospective voter has already determined how he will
vote;
2. if questioned by the company's representatives, he will

answer honestly; and
3. the party which is favored by the majority of prospective

voters will win. (In other words we neglect the possibility that
prospective voters who favor the Whigs may be more or less likely
to abstain from voting.)

These assumptions yield the following model. A randomly select-
ed prospective voter has probability p of responding that he favors
the Whigs, where p is the proportion of all prospective voters who
favor the Whigs. They will win if p > 0.5, and lose if p < 0.5.
Ordinarily this model is supplemented by assuming that:

4. The population of voters is very large, which leads to the
following: Let Xl = 1, if the ith in a random sample of n pro-
spective voters claims he favors the Whig party and let Xi = 0
otherwise. Then XJpX" ... , Xn are independent random variables
each of which is 0 with probability 1 - p and 1 with probability p.

5. MODELS OF REGRET FUNCTIONS

Throughout this book we have continually discussed the construc-
tion of numerous models for regret and utility functions. One
typical model is for estimation problems where it is assumed that
the regret corresponding to an estimate T of a parameter 0 is given
by

r(8, T) = c(O)(T - oy.
This model, an obvious approximation, seems to be apropriate in
many cases. In these cases, it is generally true that the approxi-
mation is very good when T is close to 8. Example 4.3 (concerned
with Mr. Sheppard's rifle) is another case where the squared error
is reasonable. However, there are other problems where

r(O, T) = c(O) I T - 0\

is a closer approximation to reality. A related example is the ware-
house problem, Example 4.5.
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In practical applications, it is customary for the rare statistician

who asks his client to specify a regret function to receive a blank
stare. It turns out that clients will find difficulty in specifying
regret functions because (1) they are difficult to specify and (2) the
clients are not accustomed to thinking in terms of regret functions.
The student may ask whether our elaborate structure for sta-

tistical problems serves any useful purpose when it is so difficult
to specify a regret function. In reply we have stated, and repeat,
that, in most statistical problems with a reasonable amount of data
available, small variations in the regret function have negligible
effects on the strategies selected.
However, gross variations in the regret function do have an

effect, and a rough idea of the regret function should be made
available if the client wants a reasonable procedure.
Later we shall consider problems where the statistician plays a

role in the design of the experiment (i.e., the experiment has not
yet been performed when our statistician is called in). Then it will
be important to consider the cost of an experiment. Suppose that
an experiment consists of determining the breaking strength of an
unspecified number n of individual fibers. Here the experiment
designer still has a choice of determining n. A good choice must
balance the cost of acquiring additional data against the utility of
having the extra information. How does C(n), the cost of examin-
ing n fibers, depend on n? One typical model would be expressed
by

C(n) = cn.

This model corresponds to assuming that each observation has a
fixed cost c. Another would be given by

C(n) = a + cn.
This model corresponds to assuming a cost of a for setting up the
equipment and a charge of c for each observation. These two
models are frequently used and give reasonable results although,
in most situations, more complicated functions would be more
realistic.

6. MODELS OF EXPERIMENTS

In Chapter 1 we described the experiment in terms of (1) the set
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% of all possible outcomes z and (2) the response frequencies of
the possible observations for each possible O. After our discussion
of probability in Chapters 3, 4, and 6 and our discussion of the
probability model in Section 2, we may summarize as follows. The
model of our experiment gives for each 0 a probability distribution
on the set %. In the cases where the distributions are continuous
or discrete, the probability distributions can be concisely sum-
marized by a probability density function f(z I 0). Then f(z I0)
completely specifies the model of the experiment.
In most statistical problems where the data are the observed

values of numerical random variables, such a density function is
appropriate. To be sure, there are situations where the data are
not numerical (e.g., the sociologist who observes an angry stare or
a smile in reply to a remark). In such situations, the mathema-
tician can often transform the data to the values of numerical
random variables. For example, in the polling problem, a Whig is
assigned the value one and a Populist the value zero. For simpli-
city, we shall hereafter assume that each experiment can be de-
scribed by a density f(z I0).
The reader may note that in many problems the model of the

state of nature more or less automatically determines f(z I0). For
example in the cord problem (Example 7.1), the state of nature
describes the probability distribution of individual breaking
strengths which determinesf.
Now we shall proceed to discuss several kinds of models or parts

of models of the experiments which find frequent application in
statistical practice.
t6.1. Specifications of Distributions
It is not uncommon to assume that the data are normally dis-

tributed with mean or variance, or both, depending on the state of
nature. In some problems, other distributions suggest themselves.
For example, there is reason to believe that the lifetime (number
of hours of use before failure) of a radio tube is a random variable
with approximately an exponential distribution. The exponential
distribution with mean a is given by

f(x) = 0 for x < 0
f(x) = ..!-.e-x/a for x ~ O.

a
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Figure 8.1. Density f(x) and edf for the exponential distribution
f(x) = (l/a)e-z/a for x>O.

Figure 8.1 represents the form of the density and cumulative dis-
tribution function. The cdf is tabulated in Appendix Ds•
The exponential distribution has many other uses. For example,

if a specimen of radioactive material is put in a Geiger counter,
the time between two successive counts is commonly assumed to
have an exponential distribution. This is related to the additional
fact that, if radioactivity R (as measured by the counting rate) is
studied, it will decline exponentially in time, i.e., R = ce-b

', where
t is time.
Sometimes there is reason to use the model that a density is

symmetric about its "center." This model can be expressed by
the equation

f(O + x) =f(O - x)
where 0 is the center. Two examples of symmetric distributions
are the normal distribution and the distribution of X, the sum ()f
the two faces on a pair of ideal dice.
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Exe?'cise 8.1. Does the outcome X of an ideal dial have a sym-
metric distribution? Is the exponential distribution symmetric?
Give reasons.
Many continuous distributions have only a single mode. By this

we mean that the density has only a single peak. Histograms of
grades on an examination often seem to indicate distributions
which are bimodal, Le., having two peaks. Distributions which
have a single mode are called "unimodal." Such a distribution
can be expressed by the relations

I(x,) ::;:I(x,)

and

I(x") ::;:I(x,)

Here 0 represents the mode.
Exercise 8.2. Is the normal distribution unimodal? Is the ex-

ponential distribution unimodal?
Exercise 8.3. Would you guess that the heights of American

males over 21 years of age have a unimodal distribution? What
would you say about the heights of American adults (combining
men and women over 21)?
t6.2. Models Concerned with Relations Between Variables
Physics abounds with models of this type. For example, Boyle's

law is an assertion about the mutual relationships amongst the
pressure, temperature, and volume of a gas. Newton's laws of
motion express relationship among variables such as force, mass,
and acceleration. Often there is reason to suppose, or to inquire
about, the existence of a functional relationship among variables.
Perhaps the simplest type of functional relationship is such a one
as Boyle's law, where the value of one variable can be expressed
in terms of the values of others. However, where data are ob-
tained with random errors too large to be ignored, models are less
likely to be fruitful if they relate to the random variables them-
selves than if they relate to parameters of the probability distribu-
tions. For example, it is a matter of everyday experience that,
in general, tall people are heavier than short people. It would be
a mistake to try to determine the weight of a person from his
height alone since there are many people of the same height who
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have different weights. On the other hand, it may be possible to
specify the average weight of people of a given height. Let X and
Y represent the height and weight respectively of an individual
selected at random from the population. Let E(Y I x) represent
the average weight of individuals of height x. The expression
E(Y Ix) is called the regression of Y on X (weight on height). We
might be interested in how E(Y I x) depends on x. For example,
it seems reasonable to propose the model

E(Y Ix) increases as x increases
(Le., weight tends to increase with height).
This model is not a very interesting one for height and weight.

If it were an assertion about honesty and intelligence, or income
and hours of sleep, it might be more exciting.
Sometimes we can expect that a more definitely prescribed model

is appropriate. If Y is the yield of penicillin in a certain produc-
tion setup where the only unspecified variable is the temperature
t of the mix, we might consider many possible models; three such
possibilities are:

1. E(Y I t) = A + Bt;
2. E(Y I t) = A + Bt + Ct2;
3. E(Y It) = A +B log t.
Notice that, if B > 0, then it follows in Models 1 and 3 that

E(Y I t) increases as t increases. Notice that, if C = 0 in Model 2,
it becomes ModelL Notice that we would not seriously expect
any of these three models to hold over a wide range of tempera-
tures t since, at high temperatures, the penicillin organism would
be killed, and below some temperature the yield should be exactly
zero.
Problems concerned with relations between variables are notori-

ous for the frequency with which fallacies arise from inadequacies
in the model. For example, one can show beyond a shadow of a
doubt that among children in elementary school the swifter runners
are on the average better spellers. (Among children, both running
and spelling ability increase with age.) Any model which fails to
take into account one or more important variables runs the risk
of generating nonsense.
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Exercise 8.4. For each of the three modelsabove, write the con-
ditions on A, B, and C so that E(Y I t) does not depend on t.
One important kind of relation between variables involves vari-

ables of classification. RecallMr. Sharp's observation that custom-
ers at the restaurant could be classified as "Big Eaters" or "Not
Big Eaters" and as "Affluent" or "Not Affluent." Here there
were four possible outcomes for the random variable. The distri-
bution of such a random outcome (customer) can be specified as
follows.'

B Not B

A

Not A

PH

P21

P12 PI.

P•.

P.I p.'

If now A stands for" Affluent" and B for" Big Eater," we have
Mr. Sharp's situation. If on the other hand A stands for "Anemic"
and B stands for "Vitamin B Deficiency," we have another situa-
tion. If A stands for" Native of the State of Residence" and B
stands for "High School Graduate," we have still another situa-
tion. Often relevant questions can be posed in terms of this model.
Is PH > 1/2? Is P, > 1/2? An especially important question may
be: Are A and B independent, i.e., is

PH = p,. P.,?

Exercise 8.5. For which of the following cross classifications
would you expect independence?

People classified by: sex; over 150 lb in weight or not.
People classified by: sex; blue eyes or not.

7. MODELS OF THE SET OF AVAILABLE STRATEGIES

In Chapters 1 and 5, our model of the decision making problem
involved a set of possible actions, a set of possible states of nature,
a regret function, an experiment, a set of available strategies, and
a risk function. Implicit in this model is the assumption that the
experiment has been determined. This model is especially appro-
priate for problems where the statistician is called in after all the
, In Chapter 6 we used PiA and B} instead of PH, PiA} instead of Pl.. etc. The

subscript notation is frequently more convenient.
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data have been collected. Here the strategy consists of a rule or
recipe for reacting to the data, i.e., the set of available strategies
is the set of all possible functions s on the set % of possible data to
the set of possible actions. A typical strategy s will lead to a
random action given by

A = s(Z)

where Z is the outcome of the experiment.
For simplicity we have used the above structure for the model

of the decision making problem. However, in many applications,
the decision maker can exert some influence on the choice of an
experiment. Then, roughly speaking, his object is to select an ex-
periment which will be highly informative and not very costly.
Furthermore, after the experiment, he must face the question of
whether to take one of the available actions or to do more experi-
mentation. These intermediate choices or decisions which finally
culminate in terminating experimentation and taking an action are
properly all part of an over-all strategy.
From this point of view, the proper structure of a decision mak-

ing problem should be as follows: first we have actions, states of
nature, and a regret function. Then we must select a strategy;
the strategy is a rule which tells how to react to data as they become
availahle. At each point the strategy determines which experiment
to perform next or dictates a final action from the set of available
actions. Thus, the design of experiments is one part of the selec-
tion of the strategy.
Finally, we compute the risk function R(O, s) which is the ex-

pected regret and includes the regret due to taking the final action
and due to the cost of experimentation.
It is customary and convenient but not necessary to assume that

R(O, s) = E[r(O, A)] + E(C)

where A is the final action and C is the cost of experimentation.
Generally, both A and C are random depending upon the random
outcomes of experiments.
Although our notions concerning strategies have been broadened

considerably by this discussion, the main ideas of Chapters 5 and 6
dealing with the theory of decision making are still valid.
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Furthermore, we still denote our final action by A = s(Z) even
though s does considerably more than merely select A.

8. THE MODELS FOR THE PROBLEMS OF TESTING
AND ESTIMATION

Now we are prepared to discuss concisely the character of
problems of testing hypotheses and estimation. We shall call a
problem one of testing hypotheses if (1) there are two possible
actions at and a2 and (2) the set of states of nature can be decom-
posed into two nonoverlapping sets Jf{' and .A; such that at is
optimal for 0 E ../1';' and a2 for 0 E JI';; Le.,

and

r(O, at) = 0

r(O, a2) = 0

for 0 E Jf{'

for 0 E A{.

Traditionally, one talks of the hypotheses H! that 0 E.A{. Cus-
tomarily, one equates taking action a! with accepting the hypothesis
H!. The action probabilities are given by

as(O, at) = P{s(Z) = at IO}

and

as(O, a2) = P{s(Z) = a21 O}.

The error probabilities are given by

c(O, s) = P{s(Z) = a2 IO}

and

c(O, s) = P{s(Z) = at IO}

The risk function is given by

for 0 E Jf{'

for 0 E .A;.

R(O, s) = as(O, at) r(O, at) + as(O, a2) r(O, a2) + E(C) •

Note that there are no hedging actions since each action is
optimal for some states of nature.
The test of significance (see Section 5, Chapter 7) is a hypothesis

testing procedure which is formally treated without giving explicit
consideration to A{, r(O, at), or aiO, at). The method thus deals
with an incompletely formulated model of the statistical problem.
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Some real life statistical problems are so complicated as to make
the use of significance tests convenient. However, a rational use
of this model must necessarily involve consideration of the underly-
ing decision problem.
The estimation problem is characterized by the following model.

The set of possible actions (called estimates) coincides with the set
of possible states of nature. The risk function r(fJ, T) satisfies the
conditions

1'(fJ, T) = 0
r(fJ, T) > 0

for T = fJ

for T =t= fJ.

Here the strategy (at least that aspect leading to an action) is
called an estimator and is denoted by t.
Note that there are no hedging actions since each action Tis

optimal for fJ = T. We may point out that a problem with two
states of nature and two actions could be called either a hypothesis
testing problem or an estimation problem. Here the actions a, and
a. may either be called accepting H,: fJ = fJ, and accepting H2: fJ
= fJ. or estimating fJ as fJ, and estimating fJ as fJ2• Often problems
with a finite number of available actions are called testing prob-
lems. We usually reserve the estimation title for cases where
there is a continuous range of possible estimates.

9. SUMMARY

In this chapter we discussed the concept of a model as a possibly
simplified representation of reality which permits one to come to
conclusions which can be translated into useful decisions about
reality. In discussing models of sets of available actions, we illus-
trated the need and usefulness of simplification, of rough pre-
liminary models, and some of the art of model building. The fact
that models of the regret function must usually be oversimplified
because of difficulty in specifying regrets precisely is not a funda-
mental difficulty. The reason for this is that, in problems where
considerable data are available, strategies are negligibly affected
by small variations in the regrets.
The model of the experiment is the probability distribution of

the experiment for each state of nature. Usually this is given by
a density j(z I fJ). Certain characteristics of the distribution are
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often of interest. These include symmetry and unimodality.
Models involving relations between variables have wide appli-
cability, and some were discussed in Section 6.2.
In Chapters 1 and 5 our concept of strategy was based on the

assumption that the experiment was determined. In Section 7 we
indicated that the role of the strategy can be widened to include
the design of experiments.
Finally, the models for testing hypotheses and estimation are

given. Both models fail to allow for the possibility of hedging
actions.
The art of statistics seems to lie in the construction of good

models, for there seems to be no substantial theory for this topic.



CHAPTER 9

Testing Hypotheses

1. INTRODUCTION

A problem in which one of two actions must be chosen is said to
be a problem in hypothesis testing. The trial of the butler in Ex-
ample 7.7 is of this type (acquit or convict being the two actions);
also Example 7.1 (accept the lot of fibers or reject the lot being the
two actions). In each of these examples one action was appropriate
to certain possible states of nature, and the other action appropri-
ate to the other possible states of nature. The least complicated
hypothesis-testing problems are those where there are only two
possible states of nature, (}I and (}2' Although nonartificial problems
of this special character rarely occur (see Exercise 7.8), study of
this two-state, two-action type of problem increases insight into
the often encountered problems where there are two actions and
many states of nature which naturally divide into two classes.
(Observe that in Example 7.1 "good fibers" correspond to the many
possible states where the value of ()is a number greater than 31).

2. NOTATION

Suppose that we have a two-action problem where action al is opti-
mal for any ()in J1~ and a2 is optimal for any ()in .A'2~and where (}
is known to be in one of the two nonoverlapping sets JK, JK. We
denote the hypotheses by HI: () e Ai and H2 : () e Jf/,,-.
We say that the hypothesis H: ()e ~¥ is simple if ~ has only one

element. If J1/' has more than one element, we say that His oom-
posite. Obviously the problem of testing a simple hypothesis versus
a simple hypothesis is a two-action, two-state problem. For pro-
blems in testing hypotheses, a strategy is called a test. A pure
strategy or test can be described by the set AI of possible outcomes
which lead to action al (called accepting HI because al is the action
one would take if one believed HI)' It can also be described by the

245
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set A. = Al of possible outcomes which lead to action a. (called re-
jecting HI or accepting H.). The statistician can make one of two
kinds of errors. He can reject the hypothesis HI (i.e., take action a.)
when it is true, or he can accept the hypothesis when it is false.
These are sometimes called errors of Type I and Type II respec-
tively.
In a testing problem, we have

(9.1) R«(}, s) = a.«(}, al) r«(}, al) + a.«(}, a.) r«(}, a.)

where a.«(}, al) and a.«(}, a.) are the action probabilities for strategy
s. But if () were known, one of the two actions would be appro-
priate, and the corresponding regret would be zero. Then we can
call the probability of taking the wrong action the error probability
c«(}, s), and the regret due to the error of taking the wrong action
we call r«(}). Then

(9.1a) R«(}, e) = c«(}, s) r«(}).

3. SIMPLE HYPOTHESIS VERSUS SIMPLE HYPOTHESIS
(TWO STATES OF NATURE)

We shall illustrate our ideas with t1}efollowing example.
Example 9.1. Mr. Jones is faced with the necessity of choosing

between the two actions: (al) bet a large sum that a coin will fall
heads and (a.) bet it on tails. It is known that the probability p of
falling heads is either given by HI: p = PI = 3/5 or H.: P = P. = 1/3.
Suppose the regrets due to the errors of taking action a. when HI
is correct, and action al when H. is correct, are 3 and 5 respectively.
He is allowed to toss the coin three times before betting.
We tabulate the regret function and the probability distribution

of the data in Tables 9.1 and 9.2. In the latter table, we include
the likelilwod ratio

~(Z) = !(Z!(}I) .
j(z 18.)

In Figure 9.1 we present the set of risk points (RIJ Rl) =
(R(8IJ s), R«(}., s» corresponding to the set of all strategies (pure
and randomized). We also present the set of error points (CIJ c.) =
(c«(}IJ s), c(82, s» corresponding to the set of all strategies. Since
R«(}, s) = r«(}) c«(}, s), the set of risk points is obtained from the set
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TABLE 9.1

REGRET DUE TO TAKING WRONG ACTION: reO)

0 reo) rep)

01 r(Ol) P = 3/51 3

02 r(02) P = 1/3 5

TABLE 9.2

PROBABILITY DISTRIBUTION OF DATA fez 10) AND LIKELIHOOD RATIO A(Z)

Zl Z2 Zk

01 f(zIIOI) f(z.IOI) f(Zk 1(1)

02 f(Zl!02) f(z21°2) f(Zk \(2)

A(Z) f(zII01) f(z.101) f(Zk 1(1)
f(Zl!O.) f(z.IO.) f(Zk 10.)

Zl Z. Z3 Z4 Zs Zs Z7 Z8

HHH HHT HTH THH HTT THT .:JJHtr" TTT7T/4
p = 3/5 0.216 0.144 0.144 0.144 0.096 0.096 0.096 0.064

'P-.3 1/3 0.037 0.074 0.074 0.074 0.148 0.148 0.148 0.297

A(z) 5.838 1. 946 1. 946 1. 946 0.649 0.649 0.649 0.215

Risks

1 2 3
R1=R(0l's) = 3El

Error probabilities

c:o
t;
:;:. ~ 0.8
.!: :::J
~ ~ 0.7

; ~ 0.6
~ 1ii 0.5
.g~
a. -:;;0.4
II ~
-:;- ~ 0.3.. ~
~ <l0.2
II
1fI~ 0.1

o
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

El= E(Ol's) = probability of taking action
a2 if 01 is the state of nature

Figure 9.1. Error probabilities and risks for all strategies
of Example 9.1.
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of error points by multiplying the scales by r(OJ)and r(8,) respec-
tively.1 It is clear that both sets are convex and that the admissi-
ble strategies correspond to the admissible part of the boundary
on each set. The admissible part of the boundary of the set of error
points is called the error curve.
In Example 9.1 there are 256 pure strategies, and it would be

quite a task to obtain Figure 9.1 by listing and evaluating them
all. Is there a simple method of characterizing the boundary of the
figure or at least the admissible strategies? The answer to this
question is "yes." We know that each admissible strategy is the
Bayes strategy for some a priori probabilities. In Appendix En
we use the methods of Chapter 6 to show that every Bayes strategy
is a likelihood-ratio test. We define the likelihood-ratio tests as
follows. If the data Z are observed, f(Z I8) is called the likelihood
of 8. Note that the likelihood represents the probability of observ-
ing Z when 8 is the state of nature. The likelihood ratio is then
given by

J(Z) = f(Z I8J) •

f(Z I8.)
A test is said to be a likelihood-ratio test if there is a numlier k such
that this test leads to

and either a.
if J(Z) > k
if J(Z) < k
if J(Z) = k.

Consider Table 9.3, where we obtain the likelihood-ratio tests for
values of k bracketing the possible values of J(z),5.838, 1.946, 0.649,
and 0.215.
To illustrate the computation, consider the evaluation of the like-

lihood-ratio test with k = 1. This is the test s where action a1 is
taken if J(Z) > 1. Referring to Table 9.2, we see then that action
a1 is taken if ZEAl = {zu z" z."z.}. For 81 (p = 3/5), the probability
of taking action a, is as(81, al) = P{Z E A1lp = 3/5} = 0.216 + 0.144
+ 0.144 + 0.144 = 0.648. Similarly as(8., a1) = 0.259. The proba-
bility of taking action a. can be obtained in the same fashion or
by subtracting from one. Finally, R(811 s) = 3(0.352) = 1.056 and

I It is sometimes convenient to consider the error points as risk points for a prob-
lem where r(BI) = r(B.,l = 1.
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TABLE 9.3

SOME LIKELIHOOD-RATIO TESTS FOR EXAMPLE 9.1'
Regrets Action Probabilities Risks

k Al 9 R(9.8)
Ul U2 Ul U2

91 0 3 0.000 1.000 3.000
7

'"
0.0009. 5 0 1.000 0.000

{Zr}
91 0 3 0.216 0.784 2.352

5
92 5 0 0.037 0.963 0.185
91 0 3 0.648 0.352 1.056

1 {Zl, Z'2, Z'3, Z,}
92 5 0 0.259 0.741 1.295
91 0 3 0.936 0.064 O.192

0.5 {ZI. Z2•.•• , Zr}
9. 5 0 0.703 0.297 3.515
91 0 3 1.000 0.000 0.000

0.2 {Zlo z••... , ZS}
9. 5 0 1.000 0.000 5.000

R(O•• s) = 5(0.259) = 1.295. Note that the error probabilities are
€(Ou s) = as(Ou a.) = 0.352, 1£(0., s) = a.(02' aJ) = 0.259.
All other values of k were deliberately omitted in Table 9.3. First

of all nothing new is obtained if we use more than one value of k
between adjacent possible values of the likelihood ratio. Specifical-
ly, referring to Table 9.2, the likelihood-ratio test for k = 1.5 yields
Al = {zu Z•• Z3, Z4} which is the same as for k = 1. Secondly, the
values of k we used yield the vertices of the admissible boundary.
If we use for k a possible value' of A, we obtain points on the line
segments connecting the vertices. We illustrate with four of the
eight pure strategies corresponding to k = 1.946.

Regrets Action Probabilities Risk
Al 9 R(9.8)

Ul a, Ul U.

{zr}
91 0 3 0.216 0.784 2.352
9. 5 0 0.037 0.963 0.185
91 0 3 0.360 0.640 1.920

{ZI. z.}
9. 5 0 0.111 0.889 0.555
91 0 3 0.504 0.496 1.488

{ZI, Z3, zd
9. 5 0 0.185 0.815 0.925
91 0 3 0.648 0.352 1.056

{ZI. Z., Z3, Z4}
9. 5 0 0.259 0.741 1.295

1 This title is more modest than necessary. Using this table. the entire boundary
of the set of risk points can be obtained .
• More precisely, by a possible value of A, we mean a number k such that

P{.l(Z)= k} > 0 for some 9.
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All of these strategies lie on the line segment connecting the
vertices corresponding to k = 5 and k = 1 and so are equivalent
to mixtures of these two strategies.
Finally, suppose that we wish to obtain the rest of the boundary

(dominated part) of the sets of risk points and error points. It can
be shown that the vertices of the inadmissible part of the boundary
are obtained by replacing the Al sets in Table 9.3 by their comple-
ments. This yields the foolish tests of accepting HI when the
likelihood ratio is small.
To summarize, for tests of a simple hypothesis versus a simple

alternative, every admissible strategy is a Bayes strategy and
every Bayes strategy is a likelihood-ratio test. This result may be
reasonably interpreted to mean that high values of the likelihood
ratio

,l(Z) = j(Z I01)
j(ZIO.)

tend to support HI: 0 = 01 and low values tend to support the
alternative hypothesis R2; 0 = O2,

Exercise 9.1. Derive a.ndgraph the error curve for the strategies
in the problem described by j(z I0) in Table 9.4.

TABLE 9.4

fez 1'8)

Zl Z2 Z3 Z4 Z5 Za

81 , 0.04 0.10 0.16 0.20 0.30 0.20

82 0.32 0.20 0.16 0.15 0.12 0.05

Remarks
1. In the two-state testing problem, the class of admissible

strategies corresponds to the error curve (admissible part of the set
of error points). But the error curve does not involve the particular
regrets r(OI) and r(02)' In any testing problem, admissibility does
not depend on the particular values of r(O). Of course, if r(OI) is
much larger than r(O.), one would be inclined to select an admissi-
ble strategy for which CI = c(OiJ s) is relatively small, i.e., to use
a likelihood-ratio test with a small k so that action al is very likely
to be used and CI to be small. In fact, Appendix Ell shows that the
Bayes strategy is the likelihood-ratio test for k=w r(O.)J(I-w) r(OI)
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and, as r«(JI)/r«(}2)increases, k decreases, making it easier to take
action al. Similarly if WI/W2 = (1 - w)/w is large, one prefers to
believe in HI and to take action al•
2. Our proof that the Bayes, and therefore admissible, strategies

are likelihood-ratio tests involved the assumption of discrete distri-
butions. This assumption is not necessary and the result also holds
when the data have a continuous distribution.
We present two important examples applying the likelihood-ratio

test. In one of these examples we generalize Example 9.1. When
a coin, which has probability P of falling heads, is tossed n times,
the number of heads, m, is said to have a binomial distribution. Of
course, the result indicated below for the coin-tossing problem
applies whenever the data have a binomial distribution with
unknown p. For example, it applies to polling problems.

Example 9.2. Binomial Distribution. We generalize Example
9.1 for any PI and P2with PI > P•• for any r«(}I) and r«(}2)' and for
the experiment consisting of n tosses of the coin for any n.
In Appendix EI2 we show that the likelihood-ratio tests of HI:

P = PI versus H2: P = P2can be reduced to the following form:

Accept HI
Reject HI

'rake either action

if P > k'
if P < k'
if p = k'

where p is the proportion of heads observed.
This result applies to Example 9.1 since p takes on the values

1, 2/3, 2j3, 2/3, 1/3, 1(3, 1/3, 0 for Z = ZI' Z" ••• , Zs. Notice that
the class of likelihood-ratio tests does not involve the particular
values of PI and P•• In Figure 9.2 we present the error curves for
PI = 3/5, P2 = 1/3, and n = 3, 10, 50, and 100.

Exercise 9.2. Use the fact that, when n is large, p is approxi-
mately normally distributed with mean P and standard deviation
Vp(l - p)/n to verify some points on the error curve for n = 100
in Figure 9.2.

Example 9.3. Find the sample size required to test HI: p=p,=3/5
versus H2:P = P2= 1/3 so that e(Ph s) = 0.05 and e(p" s) = 0.01.
In Figure 9.3, we draw typical (approximate) densities of p under

HI and Hz and locate a hypothetical k' between PI and P•. The error
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0.08

Figure 9.2. Error curve for testing P = 3/5 versus P = 1/3
(Example 9.2) for sample sizes n=3. 10.50, and 100.
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Figure 9.3. Approximate densities of p under HI and H2•

El = E(PI. 8) = P{p <k' IPI}, E2= E(P2. 8) = P{j}:2:k' Ip2} if 8 con.
sists of accepting P = PI when j}:2:k'.

.-
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probabilities are given by the shaded areas. Using the normal cdf,
for the appropriate k' and n, the shaded area on the left should
be el = 0.05. Thus k' should be 1.645 standard deviations from
the mean PI' That is

PI - k' = 1.645v'PI(l - PI)/n.

Similarly, the shaded area on the right should be e. = 0.01 and thus
k' should be 2.326 standard deviations from the mean of i> (under
the hypothesis P = P.). Thus

k' - P. = 2.326v' p.(l - p.)/n.

Solving for nand k' (the first step is to divide one equation into the
other, eliminating n), we obtain n = 50.89 and k' = 0.487. Thus
for n = 51 and k' = 0.487, we can improve slightly on el = 0.05
and e. = 0.01.
Exercise 9.3. Find the sample size required to test HI: P = PI

= 0.55 versus H2: P = P. = 0.45 so that e(pl! s) = e(p., s) = 0.05.
Exercise 9.4. Let PI= 3/5, P.= 1/3, r(PI) =3, r(p.) = 5, and n = 100.

Compute R(pl! s) and R(p., s) for several likelihood-ratio tests, i.e.,
several values of k'. Graph R(pl! s) against k' and R(p., s) against
k'. What is the minimax risk strategy? What is the correspond-
ing risk?
Exercise 9.5. Compute R(pl! s) and R(p., s) as in Exercise 9.4.

For each strategy graph (1/4)R(pl! s) + (3/4)R(p., s) against k'.
What is the Bayes strategy for a priori probabilities 1/4 and 3/4
for P = PI and P = P. respectively.1
Example 9.4. Normal Distribution. Consider the two-state test-

ing problem where the experiment yields n independent observa-
tions XI! X., ••. , Xn from a normal population with unknown mean P
and known standard deviation (J". The hypotheses are HI: P = PI

and H2: P = P2 (where PI > P2)'
In Appendix E12we show that the likelihood-ratio tests of HI

versus H. are of the following form:
I It is easy to modify the argument of Appendix EI2 to find the relationship be-

tween k' and k = (w r(B2))/((1- w) r(BI)). Then there would be a more direct method
of finding the Bayes strategy. However the two-state testing problem is more of
a theoretical tool than a practical problem and there is little call for Bayes solu-
tions of two-state testing problems in actual practice.
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Accept HI
Reject HI

Take either action

ifX>k'
if X < k'
if X = k'.

Since the probability that X = k' for some specified k' is zero, the
choice of the action taken when X = k' has no effect on the error
probabilities. Notice that in this example also the class of like-
lihood-ratio tests does not involve the particular values of the
parameters f/I and f/2' This property plays an important role in
extending the results for the two-state binomial and normal prob-
lems to the many-state case.
In Figure 9.4 we indicate the error curves for Example 9.4 with

f/I = 32, f/2 = 30, rr = 8, and n = 16, 64, and 256.
1.0

1.0
E1

Figure 9.4. Error curves for Example 9.4 with PI = 32, P2 = 30,
(f = 8, and sample sizes n = 16,64, and 256.

Exercise 9.6. Verify some points of Figure 9.4.
Exercise 9.7. Find the sample size required to test HI: f/ = f/I

= 32 versus H2: f/ = f/2 = 30 so that e(f/I's) = e(f/2' s) = 0.05.
(Assume normal distribution with rr = 8.)
Exercise 9.8. Show that the error curves of Figure 9.4 depend

only on -vn(PI - f/,)/rr. When this number increases, the error
curve improves.
It may be remarked that for both examples discussed in this sec-

tion, the admissible tests were exactly as would be expected. This
is not always the case. In Appendix EI2 we present an example
where the likelihood-ratio tests would strike the uninitiated as quite
strange.
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oExercise 9.9. Derive a simple form of the likelihood-ratio test

for HI: 0" = 0"1 versus Hz: 0" = o"z, where 0" represents the standard
deviation of a normally distributed random variable with known
mean P and 0"1 > O"Z.

4. COMPOSITE HYPOTHESES INVOLVING
ONE PARAMETER

The two-state testing problem is artificial but, as we shall see,
instructive. Practical problems in hypothesis testing usually
involve many possible states of nature. One case of a testing
problem with many states of nature is the Example 7.1. Here the
problem consists of testing HI: (}:2: 31 versus Hz: () < 31. It is not
uncommon to have such tests where the state of nature is specified
by a single number () and to be interested in whether () is large or
small. Another example is the following generalization of the coin-
tossing problem (Example 9.1).

Example 9.5. Mr. Jones is given a choice between the two ac-
tions: (at) bet that a coin will fall heads and (az) bet on tails. The
unknown probability of a head is p between 0 and 1. When p> 1{2,
he should bet heads and when p < 1{2he should bet tails. Suppose
that his regrets due to taking the wrong action are given by

r(p) = 30lp - 1{21

and that his data consist of the result of 100 tosses of the coin.
This problem is readily seen to be a test of the composite hypo-

thesis HI: p :2: 1{2 versus Hz: p < 1{2 and is also of the form
described above. In general, we may consider the problem of
testing HI: 0:2:00 versus H": () < 00' where the regrets are specified
by r(O) and the data have the distribution j(z 10).
Before we proceed with the discussion of the general problem,

let us consider the two special problems of Example 7.1 and
Example 9.5. We already claime9. that in Example 7.1 the admissible
tests consist of accepting HI if X is large enough. In the general
normal problem with unknown mean p and known variance o"z, the
admissible tests of HI: P :2: Po versus Hz: P < Po are of this form.
Similarly, in the general binomial problem the admissible tests of
HI: p :2: Po versus Hz: p < Po consist of accepting HI if P is large
enough. (This result applies to Example 9.5, of course.) These
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statements are proved in Appendix Ela• The proofs are based on
the facts that: (1) for the two-state normal problem of Section 3
with known variance, the class of admissible tests is not affected
by the particular values of PI and P.. and (2) for the two-state
binomial problem, the class of admissible tests is not affected by
the particular values of Pl and P••

Exercise 9.10. Evaluate and graph s(p, s) and R(p, s) for
Example 9.5, where s consists of accepting HI if p;;::: 0.5 and H2

if P < 0.5, and n = 100.

Thus, in these two composite hypothesis testing problems of
rather general interest, the class of admissible tests is easily charac-
terized. However, in the general problem of testing HI: 0 > 00
versus H2: 0 < 00, this statement cannot be made. In many prob-
lems, a simple characterization of the admissible strategies is
mathematically difficult or impossible to achieve. Frequently, the
statistician will compromise by considering strategies which are
not necessarily optimal or admissible. If his strategy, when evalu-
ated, seems not to be too far from what he feels a good strategy
should yield, the statistician may be quite content to use it.'
Thus we shall frequently find ourselves in the position of pro-

posing strategies which seem reasonable. In the one-parameter
problem of testing HI: 0;;::: 00 versus H.: 0 < 00, several approaches
have been suggested for generating reasonable strategies.
The first of these is a generalization of the likelihood-ratio test.

Except for the following brief description, we shall not refer to it
again. The generalized likelihood ratio for testing HI: 0 € J1{
versus H.: 0 € .A:; is defined by

maxj(ZIO)
~(Z) BEYI

maxj(ZIO)
BE'/r2

and the generalized likelihood-ratio test consists of accepting HI if
~(Z)is large enough. Roughly speaking, this method consists of
comparing the likelihoods of the most likely states in J1{ and .A:;
respectively. The method is often difficult to apply and generally
involves the methods of calculus. On the other hand, it can be
I It is for this purpose that statisticians frequently study properties of optimal

strategies which are too complicated to use in practice.
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applied to the general two-action problem and not only to the
one-parameter case. Furthermore, under many circumstances, this
method has been shown to yield strategies which are very good
when the sample size is large.
A second method which is specifically designed for the one-para-

meter case is the indifference zone approach. According to this ap-
proach, the statistician selects an interval «(J•• (Jl) about (Jo within
which the regrets seem to be small, and such that the regrets are
sizable outside this interval. This interval is called the indifference
zone, and the statistician is not seriously concerned with the error
probabilities in the indifference zone. On the other hand, he wants
the error probabilities to be small for (J not in this zone. Accord-
ingly, he applies a likelihood-ratio test of Ht: (J= (JI versus H!!: (J
= (J. to test HI: (J ~ (Jo versus H.: (J< (Jo' That is, he accepts HI if

.l*(Z) = j(Z\(Jl)
j(Z I(J.)

is large enough. This test is relatively simple to apply. If this test
gives small error probabilities for (J= (Jl and (J= (J•• one can expect,
with a reasonable amount of luck, that it will give small error proba-
bilities outside the indifference zone. (Of course one actually
checks on this question by computing some error probabilities out-
side the indifference zone.)
In Example 7.1 Mr. Good might feel that he is not much con-

cerned with what happens if 30.7 < (J < 31.5 for the regrets there
are less than 2, whereas they are much larger outside the
interval (30.7,31.5). Similarly in Example 9.5, one might select
{p: 0.45 < p < 0.55} as an indifference zone.
How does one select an indifference zone? Why is (0.45, 0.55)

a more reasonable choice than (0.499, 0.501), or is it? Strictly
speaking, the indifference zone is merely a device which permits
us to compute reasonable strategies readily. From this point of
view, one indifference zone is more appropriate than another only
if the strategies it yields have better risk functions than the other.
Accordingly, one might compare the risks for strategies derived
from several indifference zones.

Exercise 9.11. The Whig party has hired Mr. Turner to deter-
mine who will win an election. Mr. Turner will either (a1) predict
that the Whigs will win or (a,) predict that the Populists will win.



258 ELEMENTARY DECISION THEORY

He will base his action on a sample of n random voters.. He is
interested in being correct mainly to increase his prestige, and he
considers his regret to be specified as in Figure 9.5, where p is the

5

4

3
r(p)

2

o
0.40 0.44 0.48 0.52 0.56 0.60

p

Figure 9.5. Mr. Turner's regret function for Exercise 9.11.

proportion of all voters who prefer the Whigs. This curve is based
partly on his assumption that his employers will be annoyed with
him if he guesses wrong on a very close election, and that they
will be more disappointed in him if he guesses wrong in their favor
than otherwise. Evaluate the risk functions for SO.5' where Sk' con-
sists of taking action al if i> ~ k' and the sample size n = 100.
Exercise 9.12. In the binomial problem of testing Hl: p ~ 0.5

versus H, : p < 0.5, find the smallest sample size and the appro-
priate strategy for which e(0.45, s) = e(O.60,s) = 0.01.

5. COMPOSITE HYPOTHESES INVOLVING ONE
PARAMETER: TWO-TAILED TESTS

Example 9.6. Mr. Sharp runs a gambling establishment where,
for a small charge, people can bet against the house on the flip of
a coin. It is important that the coin be rather well balanced, other-
wise people will notice whether it favors heads or tails and bet ac-
cordingly, much to Mr. Sharp's regret, until he replaces the coin.
His available actions are (al) to use the coin or (a.) to discard it and
search for another. Mr. Sharp represents his regret function by
the graph of Figure 9.6. Notice that, if 0.48 :::;:p :::;:0.52, the coin
is sufficiently well balanced so that the advantage gained by some-
one who knows of its bias does not outweigh the house's charge
for betting.
This problem is that of testing Hl: 0.48 :::;:p :::;:0.52 against the

alternative H.: p < 0.48 or p > 0.52, where p is the probability of
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Figure 9.6. Mr. Sharp's regrets for Example 9.6.

the coin falling heads. If Mr. Sharp tosses his coin 400 times and
p is the observed proportion of heads, it is clear that a reasonable
test would be to accept H, for p sufficiently close to 1/2. Thus ac-
cepting H, if 0.48 ~ p ~ 0.52 is one such test, accepting H, if
0.45~ p ~ 0.55might be another, and accepting H, if 0.45~ p~ 0.51
might be reasonable if Mr. Sharp's previous experience led him to
believe that most biased coins favor heads. Let us consider the
second of these tests. The probability of rejecting H, is the pro-
bability of p < 0.45 plus the probability of p > 0.55 and is repre-
sented by the areas in the two tails of the distribution of p (see
Figure 9.7). For this reason, the three tests indicated above and
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0.44 0.48 0.52 0.56 0.60
Probability of rejection = sum of shaded areas

Figure 9.7. Representation of the action probability
for a two-tailed test.

all tests which lead to rejection of H" if either p < k. or Ii > k"
are called two-tailed tests.
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Exercise 9.13. Indicate the ideal action probabilities for Mr.
Sharp. Evaluate the error probabilities and risks for s which
consists of accepting HI if 0.45 ~ P ~ 0.55.
Exercise 9.14. Howwould you improve on the test of Exercise

9.13? If p had a known a priori probability distribution, describe
roughly how you would use it.

Example 9.7. Let us suppose that in Mr. Jones' problem
(Example 9.5) the sizeof the bet has increased considerably but that
he is no longer obliged to bet. On the basis of 100 tosses of a coin,
he can decide on one of three actions. These are: (a,) do not bet;
(a.) bet on heads; and (~) bet on tails. Assuming that the bet, if
made, is a very large one at even odds, he would actually have
a loss of utility if he bet and p were close to 1/2.1
This problem of Mr. Jones resembles that of Mr. Sharp in Ex-

ample 9.6. While Mr. Sharp is interested in testing whether the
coin is too unbalanced to use, Mr. Jones wants to know if it is suf-
ficiently unbalanced to take advantage of, and, if so, whether to
bet on heads or tails. The two problems differ in one important
respect. Mr. Sharp has two actions available (keep the coin or dis-
card it) while Mr. Jones must decide among three actions. These
are: (aj) do not bet; (a.) bet on heads; and (a3) bet on tails. Thus
we may call Mr. Jones' problem a trilemma to distinguish it from
the dilemma or two-action choice, which is usually called a testing
problem. In the trilemma problem, we must evaluate as«(J,al),
as«(J,a.), and as«(J,a3) to compute the risk

R«(J,s) = as«(J,a,) 1'«(J,a1) + a.«(J, a.) r«(J, a.) + as«(J,a3) r«(J, ~).

Exercise 9.15. Present the graphs of a version of a reasonable
regret function for Mr. Jones. You must consider r«(J, aj), r«(J, a,),
and r«(J, a3). What are the ideal action probabilities? Express this
problem as one of testing hypotheses where there are three alter-
native hypotheses.
Exercise 9.16. Referring to Exercise 9.15, evaluate and graph

R«(J, s) for s which calls for (a1) if 0.45 ~ P ~ 0.55, (a.) if p > 0.55,
and (~) if P < 0.45 where n = 100. In doing so, tabulate r«(J, a,),
r«(J,a.), r«(J,a3), as«(J,aj), as«(J,a.), and as«(J,a3) for each (Jconsidered.
Characteristically the two-tailed testing problem involves
I This is true for anyone whose utility for money is concave.
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testing a hypothesis H,: 8.-:;;'8-:;;'81 versus the alternative H.: 8<8.
or 8 > 81" The trilemma can be expressed as the selection of one
of the three alternative hypotheses, HI: 8. -:;;,8 -:;;,81J H.: 8 > 81J
and Ha: 8 < 8•.
Now let us analyze Example 9.6 further. It is suggested that

the reader review Section 5, Chapter 7, before proceeding. Strict-
ly speaking, this problem is one of testing HI: 0.48 -:;;,p -:;;,0.52. In
common statistical practice, Mr. Sharp's problem is usually called
one of testing as to whether the coin is perfectly well balanced.
Thus Mr. Sharp's problem is confused with that of testing
Ht: p = 1/2 versus H!: p "* 1/2. If a scientist wanted to test
whether this coin had a p within 0.001 of 1/2, his problem would
also customarily be confused with the above testing problem.
This is a special case of the test of a simple hypothesis Ht: 8 = 80
versus the composite alternative 8 "* 80, The fact that the scientist
and Mr. Sharp have radically different regrets should not be over-
looked. (Consider their regrets for deciding" HI is true" when, in
fact, p = 0.51.)
What should a statistician do if a customer comes to him for a test

of 8 = 80 versus 8 "* 80? In such a case, it is important to ask
whether the customer would not prefer to accept HI (i.e., take the
action that is appropriate for 8 = 80) when 8 is not necessarily 80
but very close to 80, Questions of this type help to specify what
values of 8 are to be considered practically equal to 80, Such a ques-
tion would be unnecessary if the customer provided the statistician
with his regret function. In practice, it is impossible to find custo-
mers who will specify a precise regret function. They are usually
reluctarit even to give a rough idea of their loss function. Al-
though slight deviations in the regret function have little effect in
problems involving considerable data, a rough idea of r(8, a) is
absolutely necessary to yield an intelligent analysis.
How should a statistician analyze a problem if he does not have

an accurate picture of the customer's regret function? Tocompute
the risk function, one needs the action probabilities and the
regrets. If the regrets, which depend on the customer, are not
specified, the statistician can indicate the action probabilities of
the various strategies. Customarily, the statistician presents his
customer with various strategies and their action probabilities.
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The customer selects one of these strategies. Presumably, at
least two kinds of considerations enter into making this choice:
1. The relative regrets due to the various actions. If incorrectly

taking one action is far more costly than incorrectly taking the
other, the customer may favor a strategy which holds the corres-
ponding error probabilities low at the expense of raising the other
error probabilities.
2. Intuition, opinion, or knowledge as to which states of nature

are likely and which are unlikely. Thus if Mr. Goodknew that bad
lots were rarely sent to him by Mr. Lacey, he might choose a strate-
gy giving a high probability of accepting a bad lot because it would
at the same time give a high probability of accepting a good lot;
that is, his a priori information would make him prefer that one of
the error probabilities be small.
If we consider a problem of testing Ht: ()= (}o versus H:: ()* (}o,

whether or not it would be more adequately phrased as one of
testing HI: (). < ()< (}H it is customary to call u,((}o, a.) = c((}o, s)
the significance level of the test s of H[.
In the absence of a priori knowledge concerning (), a relatively

low (strict) significance level is called for if (1) rejecting H[ when
it is true is very expensive, (2) it is desirable to accept Ht unless
()is far from (}o, or (3) the sample size is large.
Exercise 9.17. On the basis of 100 observations, indicate two

different two-sided tests of HI: p = 1/4 versus H.: p * 1/4 for which
the significance level is 0.05. Graph the action probability
us((), aI) for each test. Hint: You can compensate for increasing
one tail by decreasing the other.
Exercise 9.18. Professor Barker wonders whether the graduate

students who take his course are typical of the population of
graduate students. Assuming the model that his students have
normally distributed grades with mean f1 and (J' = 100, he wishes
to test HI: f1 = 500 versus H.: f1 * 500. Indicate a test based on
a sample of 100 students with a significance level of 0.05.

6. SEVERAL PARAMETERS

To this point we have discussed testing a simple hypothesis
against a simple alternative, and testing possibly composite hypo-
theses against one another. In the former case, only two particular
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distributions come under consideration. In the composite cases
discussed, the two alternative sets of states of nature were
completely described in terms of two sets of possible values for a
single parameter (e.g., P or fl).
Many (perhaps most) composite hypothesis-testing problems are

more complex and involve two or more parameters. Only by
assuming (J" to have the known value 8 did we force the cord
problem (Example 7.1) to be a one-parameter problem involving
only fl.
Similarly, if it were desired to test whether one drug were bet-

ter than another for curing a disease, two parameters would be
involved. The state of nature could be represented by 0 = (PH p,),
where Pi is the probability that drug i will cure a patient. Then
we must test H,: P, ::;;P, versus H,: P, > P" More specifically, we
test H,: 0 € Jf{ versus H,: 0 € .A;, where

Jf{= {(PH pJ: 0::;; P, ::;; P, ::;;I}
and

A{= {(PH p,): 0 :S P, < P,::;;I}.

(If one of these drugs is a very well established drug and the other
a relatively new one, then we might be inclined to modify HI to
Ht: P, ::;;P, + 0.1 and H, to H,*: P, > PI + 0.1.)
Although problems involving two or more parameters are more

complex than one-parameter problems, most of the ideas develop-
ed in the one-parameter case are still useful; some new notions
are needed in addition.
Some problems cannot be described in terms of distributions

which are completely known except for the values of a few parame-
ters. Instead, the distributions may be entirely unknown, or so
vaguely known that expression in terms of a few parameters is not
possible. For example, suppose that it is desired to test whether
female students who receive a grade A in freshman chemistry tend
to weigh more than female students who receive a grade of B.
Here we wish to know whether one cdf is to the right of the other
without any knowledge about the cdf's. The subject of nonparamet-
ric inference involves tests which would be appropriate for such
problems.
A two-parameter problem of classical type is presented as Ex-

ercise 9.19.
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Exercise 9.19. Let Xl' X., •.. , XIO be n observations on a normal-
ly distributed random variable with mean fl and unknown variance
(T'. Construct a test of HI: fl = flo versus Hz: fl "* flo at a signifi-
cance level of 0.05. Hint: If (T were known, a reasonable test would
consist of accepting HI if IX - flol < 1.96(T/vn, i.e., if

I~/~~ol < 1.96 .

If (T is unknown, one might consider replacing (T by sx.
However, the distribution of

t- X-flo
- sx/v n

is not normal. In fact t has the t distribution with n - 1 degrees
of freedom if fl = flo (see Appendix D.).

7. DESIGN OF EXPERIMENTS

There are two important aspects to the problem of design of ex-
periments. One is to decide which experiment to perform and the
other is to decide how many observations to take. The following
example illustrates the first aspect.

Example 9.8. Let us return to Example 7.1. Mr. Good's vice pre-
sident suggests that measuring the breaking strength of each of
64 strands is a tedious and expensive experiment. It would be half
as expensive to subject each strand to a 30-gram load and to see
whether it breaks or not. Would it be wiser to determine 64 break-
ing strengths or, for the same cost, to determine how many of 128
strands have breaking strength of over 30 grams?
Assuming that the strand strengths are normally distributed

with mean fl and standard deviation 8, the probability p that a
strand will not break under a 30-gram load is

p = P{X > 30} = p{ X ~ fl > 30 ~ fl }.

For each value of fl there is a corresponding value of p. If fl =
31, p=0.550. Thus, if we decide to use the alternative experiment,
our problem becomes one of testing HI: p~0.550 versus Hz: p<0.550.
In Figure 9.8 we compare the risks for the minimax strategies for
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-- Accept if X ~ 31.24 (64 observations)

--- Accept if Il> 0.559 (p is the proportion of
128 fibers which do not break under load of 30 grams)

1.0

0.8

-:;- 0.6
:i
~ 0.4

~ 31 ~ ~
/.L

Figure 9.8. Risks for minimax strategies for two
designs in Example 9.8.
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both designs. It is clear that the new design is an improvement.
One might also investigate whether a different load would yield
a still better risk function.
To illustrate the aspect of experimental design which involves

the number of observations to take, we extend Example 9.5.
Example 9.9. Assuming that the regret due to taking the wrong

0.3

0.3-'"o
,; 0.2
~

Q:;

0.1

-"'~ 0.2
~~
Q:; 0.1

o
0.30

0.3

0.70

o 0
0.30 0.50 0.70 0.30 ,0.70

p P
Figure 9.9. Risk functions for Example 9.9 for 80.5 where the cost
per observation is 0.0005 and for sample sizes n = 100, 150, 200, 300.



266 ELEMENT ARY DECISION THEORY

action is r(p) = 30 Ip - 1/21, and that there is a cost of 0.0005per
toss of the coin, the risk associated with a strategy involving n
tosses is

Rn(p, s) = 301p - 1(21cn(p, s) + 0.0005n.

In Figure 9.9, we graph Rn(p, so .• ) for the strategy so .• which con-
sists of betting on heads (aJ if p ?: 0.5 and betting on tails (a.) if
p < 0.5, and for sample sizes n = 100, 150,200, and 300. It seems
that from a minimax risk point of view, n = 225 is the appropriate
sample size and that the corresponding maximum risk is 0.277.
Exercise 9.20. Referring to Exercise 9.11, evaluate the risk

functions for SO.5 and SO.51 for n = 100, 225, and 400where the cost
per observation is 0.001. (This problem involves six risk function
evaluations, each of which could appropriately be assigned to a
portion of the class.) Comparing these risk functions, estimate the
sample size and strategy which minimize the maximum risk.

8. SEQUENTIAL ANALYSIS

A strategy which involves the design of an experiment must
consider how many observations to take. In our discussion of
Mr. Jones' problem, Example 9.9, we saw that the minimax risk
strategy involved 225 observations, provided that the number of
observations is specified before the experiment is carried out.
In general, however, it is possible to decide, after each observa-

tion, whether to take another observation. If we decide not to
take another observation, wemust take one of the available actions.
If we decide on another observation we must select which experi-
ment to perform. A plan which provides the rules for making
these decisions after each observation is called a sequential strategy.
In this section we shall assume that the experiment is fixed
throughout and that our only choices concern whether to continue
repeating this experiment and what (final) action to take.
Furthermore, let us assume that we can use the indifference zone

approach to replace our composite hypothesis testing problems by
problems which involve testing a simple hypothesis versus a simple
alternative. In short, we assume that we are allowed to perform
independent repetitions of a specified experiment at a cost of c
(units of utility) per repetition to test HI: (J = (JI versus H.: (J = (J2'
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The risk corresponding to a test is given by

R(O, s) = r(O) 0.(0, s) + c E(N I0)
where N is the number of repetitions performed. We use N to
represent the number of observations finally taken because it is
a random variable.
Let Xii the outcome of the ith experiment, have density f(x I0).

We define the likelihood ratio based on the first n observations
Z••= (X]' X2, ••• , Xn) by

An(Zn) = f(X1 I0])f(X21 01) ••• f(Xn 10,) •
f(XI I02)f(X21 O2) ••• f(X •• 1 0.)

A test is said to be a sequential likelihood-ratio test if there are
two numbers k] and k2 and if, after the nth observation, the test
calls for:

Another observation
Accepting H]
Rejecting H]

when k2 < A••(Zn) < k]
when An(Z) Z k]
when An(Z ••) ~ k2•

In Appendix Ew we show that every admissible test is a sequential
likelihood-ratio test. The derivations of the error probabilities and
expected sample size are beyond the scope of this book.

Example 9.10. Binomial Distribution. We extend Example 9.2
to allow for sequential testing, Let 'P••be the observed proportion
of heads after n observations. In Appendix E]5'we show that, after
the nth observation, a sequential likelihood-ratio test calls for:

Another observation l'f b2 < A < + b]a - - Pn a -
n n

Accepting HI

Rejecting HI

if

if

Pn z a + ~
n

A < b2Pn _ a --
n

where appropriate values of a, bH and b2 may be determined in
terms of the regrets, cost of sampling, and a priori probabilities.
To specify appropriate values of b] and b2 is too difficult for this
course but more details about this example are given in Section
8.1. It suffices to indicate the intuitively obvious fact that increas-
ing b] alone decreases the probability of accepting H] and tends to
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increase the expected sample size. Similarly, increasing b. alone
will decrease the probability of rejecting HI and increase the ex-
pected sample size. Thus, if the cost of sampling is small, bl and
b. should be large. If r(8,) is much larger then r(8.), we will tend
toward accepting HI' and b. will be much larger than bl•

Example 9.11. Normal Distribu,tion With Known Varia?We. We
extend Example 9.4 to allow for sequential testing. iLet Xn be the
sample mean of the first n observations. In Appendix EI5 we show
that after the nth observation, a sequential likelihood-ratio test
calls for:

Another observation

Accepting HI

Rejecting HI

if

if

Xn~a+ ~
n

Xn~a- b.
n

where
a = PI + P•.

2

The remarks made concerning bl and b. for the binomial example
are also appropriate here. More details will be given in Section
8.2.
In a testing problem it is customary to consider in advance the

values of CI and c. which are tolerable. Then a sample sizeN* can
be chosen to yield these error probabilities. Alternatively, a

TABLE 9.5

AVERAGE PERCENTAGE SAVING IN SIZE OF SAMPLE WITH SEQUENTIAL
ANALYSIS AS COMPARED WITH THE NONSEQUENTIAL TEST FOR

TESTING THE MEAN OF A NORMALLY DISTRIBUTED VARIABLE

When 1-'=1-'1 When 1-'=1-"

~I 0.01 0.02 0.03 0.04 0.051 0.01 0.02 0.03 0.04 0.05
0.01 58 60 61 62 63 58 54 51 49 47
0.02 54 56 57 58 59 60 56 53 50 49
0.03 51 53 54 55 55 61 57 54 51 50
0.04 49 50 51 52 53 62 58 55 52 50
0.05 47 49 50 50 51 63 59 55 53 51
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sequential test may be constructed to obtain these values; in this
case, the sample size is random, but the expected sample size
can be computed and is less than N*. Table 9.5 shows the savings
in sample size for various CI and C2obtained by sequentially testing
HI: P = PI versus H2: P = P2 for a normally distributed random
variable with known variance.
tS.l. Details in the Binomial Example
For reference purposes, we present the following equations

which approximate a, bH b•• action probabilities, and expected
sample size for a sequential likelihood-ratio test with specified CI

and C2' We also illustrate with a numerical example.
In Appendix E15, we see that the value of a is given exactly by

a = g log ( 1 - P. )
1- PI

where
1

g = -----------
log ([PI/1 - PI)]/[P2/(1 - P.)]}

To obtain a desired CI and c., we require (approximately)

(I-c)b1= g log I

C.

and

(I-c)b. = g log 2 •

CI

Then the action probabilities are defined for all P and approximated
by

a(p a) = 1 - [cJ/(l- C2W
,I [(1 - CI)/C.]" - [cl/(l - c.)]"

where h = -1 if P = PH h = 1if P = P•• and, in general, h is relat-
ed to P by

P = 1 - [(1 - PI)/(l - P.)]"
(PI/P.)" - [(1 - pJ)/(l - p.)]" .

Finally
E(N Ip) = a(p, al) log [(1 - cJ)/c.] + a(p, a.) log [cJ/(l - c.)]

P log (PJ/P') + (1 - p) log [(1 - Pl)/(l - P.)]

For comparison purposes, in Figure 9.10we compare the minimax
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fixed sample size solution of Mr. Jones' problem (see Example 9.5)
with the sequential test which yields the same error probabilities
at PI = 0.53 and P2 = 0.47. Here a = 0.5, bl = b2 = 6.2181, and
€I = €2 = 0.1833. 0.5

0.4

__ 0.3
'"
~ 0.2

0.1

o
0.3

250

200

<>. 150
Z
i;S'100

0.7

o
0.3

0.3

__ 0.2
'"~
~ 0.1

o
0.3

0.4

0.4

0.5
p

0.5
p

0.6

0.6

0.7

0.7

- - - Fixed sample size
-- Sequential

Figure 9.10. Comparison of minimax fixed sample size test with the
sequential test which yields the same error probabilities at PI = 0.53

and P2 = 0.47 for Example 9.5.
Sequential test: Continue sampling if (0.5)n - 6.2181 <M" < (0.5)n +

6.2181.
Nonsequential test: Sample size is 225. Accept if p:2::0.5.

To illustrate how to apply such a test, we shall apply the se-
quentiallikelihood-ratio test with a = 0.6, bl = 1, and b2 = 2 to the
d~~~~~~~~~~~~~~~~~~~~~~
H, H, T, H, T, T, H, H, T, ....
It is more convenient to replace the inequality
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b. ~ ba - - < Pn < a +--.!.
n ,1 n

i~
by the equivalent one .,

q
na - bi <l1ln < na +bl

where Inn is the number of headJ in the first n tosses. In Table 9.6
we tabulate na - b•• Inn. and na ~ bl•

TABLE 9.6
!,

ApPLICATION OF SEQUENTIAL LIKELIHOOD.RATIO TEST FOR THE BINOMIAL
PROBLEM WITH a = 0.6, bl = I, and b. = 2

1.6
2.2
2.8
3.4
4.0
4.6
5.2
5.8
6.4
7.0

mn
II 1
"it 2

2
3
4

J
'I

II

-1.4
-0.8
-0.2
0.4
1.0
1.6
2.2
2.8
3.4
4.0

na - b,n

1
2
3
4
5
6
7
8
9
10 ,I

~I
Therefore we accept HI after th~i 5th observation.

'I

Exercise 9.21. Use the table 6f random numbers (Table G1) to
simulate an experiment with' p =h4. Apply Mr. Jones' sequential,
strategy with a = 0.5 and bl = b.:i= 6.2181. Does the strategy lead
to error in this case? How many11observations did you take?

tS.2, Details in the Normal Exam1lewith Known Variance
Here again we have the usef41 approximations for bl and b••

These arel '

b
l
= 2.3030"' ., I (1 - c;)

( • )'i og
PI - fl. ,I C,

and ,l
b. = 2.3030"': log ( 1- c. )

(fll - fl.) 11 CI

The action probabilities (sometimes called the operating charac-
teristic) and expected sample siz~iare approximated by

I The factor 2.303 represents the reciprocal of the logarithm of e. If natural '
logarithms were used, this factor would hot be present.

!
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where

and
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a(p a) = 1 - [cJ(1 - c.)]"
,I [(1 - cJ/c.]" - [cl/(1 - c.)y

Exercise 9.22. Consider Exercise 9.7. Specify the fixed-sample-
size test and the sequential likelihood-ratio test which yield
el = 0.05 and c. = 0.05. Graph a(p, al) for each test and compare
the fixed sample size with the graph of the expected sample size
for the sequential test.

9. SUMMARY

In this chapter we discussed problems in testing simple and
composite hypotheses where there are two actions, one being
optimal for some states of nature, the other for the rest. For the
two-state, two-action problem, admissible strategies are Bayes
strategies. If the experiment (with sample size) is specified, the
Bayes strategy for testing HI: (J= (Jj versus H.: (J= (J.when the a
priori probability of H. is w, is the likelihood-ratio test which con-
sists of :

Accepting HI if J(Z) > k = w r«(J.)
(1 - w) r«(Jj)

Rejecting HI if J(Z) < k
Taking either action if J(Z) = k

where J(Z) = j(Z I (Jj)/j(Z I(J.) is the likelihood ratio. Thus the class
of Bayes strategies is the class of likelihood-ratio tests. This class
does not depend on the regrets r«(Jj) = r«(J1la.) and r«(J.) = r«(J., al),
although cognizance should be taken of r«(Jj) and r«(J.) and of the
error curve in selecting a strategy from this class. The error curve
is the part of the boundary of the set of (Ch c.) for all strategies,
where Cj = a.«(JjJa.), c. = a.«(J•• a1), and a.«(J, a) is the probability
that the strategy s leads to action a when (J is the set of nature.
For composite hypotheses, one can on occasion, apply the results
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for tests of simple hypotheses versus simple alternatives to obtain
the admissible strategies. However, this is not always possible.
Often one must be satisfied with strategies which seem reasonable
and which yield reasonable risks. Here one must attempt to keep
the error probabilities small. These are c(8, s) = a,(8, a.,) for those
8 where al is preferable, and c(8, s) = a,(8, al) for those 8 where a.
is preferable. Two approaches often used are the following:

1. Indifference Zones. If 81 and 8. are the end points of an in-
difference zone in which it is not especially urgent to take the best
action, apply a likelihood-ratio test for testing Ht: 0 = 81 versus
H:: 0 = 8•.

2. The Generalized Likelihood-Ratio Test. For composite hypo-
theses, the generalized likelihood ratio is defined by

maxf(Z 18)
eEA'"I

..l(Z) = maxf(Z I8)
eEA'".

where ..A/; and JV; are the sets of 0 on which actions al and a. are
preferred respectively. The generalized likelihood-ratio procedure
consists of :

Accepting HI if ..l(Z)> k
Rejecting HI if ..l(Z)< k
Taking either action if ..l(Z)= k.

The trilemma resembles the two-action problem (dilemma). It
is somewhat more complex in that, to evaluate a strategy, three
action probabilities a,(8, al), a,(O, a.), and a,(8, aa) are involved in
computing the risk function R(8, s).
When faced with the problem of testing HI: 8 = 00 versus the

alternative H.: 0 *- 80, it is customary to call c(8o, s) = a,(Oo, a.) the
significance level of test s.
When we consider the possibility of modifying the sample size

in a testing problem, we must incorporate the cost of sampling into
the risk function. A good procedure will balance the cost of sampl-
ing against the error probabilities. Extending our strategies, it is
possible to consider sequential strategies which, after each observa-
tion, permit a choice between action au action a., and taking
another observation. The class of admissible sequential strategies
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for the test of a simple hypothesis versus a simple alternative
with a fixed cost per observation is part of the class of sequential
likelihood-ratio procedures which are described in Section 8. These
procedures minimize the expected sample size for the error proba-
bilities attained.
Throughout this chapter we have ignored Bayes strategies for

testing problems except as a theoretical device to characterize the
admissible strategies. The reason is that, for problems involving
composite hypotheses, Bayes strategies are cumbersome to apply,
and involve the giving of explicit loss functions, and, still more
restrictively, require the existence and knowledge of the a priori
probability.
In most applications, it is extremely difficult to know the regrets

with any precision. Therefore, in statistical practice, considerable
attention is paid to the action probabilities (operating character-
istics) of tests. The individual using statistical techniques must
select among the available tests by comparing the action proba-
bilities, using his vague ideas about the regrets and about the a
priori probabilities. Fortunately, what constitutes a good strategy
is not very sensitive to small fluctuations in the regret function or
a priori probabilities when considerable data are available.
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CHAPTER 10

Estimation and Confidence Intervals

1. INTRODUCTION

Estimation problems are concerned with identifying the state of
nature or certain aspects of it. The action taken is the one which
would be best if the estimate were the true value of the parameter.
Often, the action is to assert a value for the parameter. The loss
involved in taking the wrong action depends, among other things,
on how "far" the action taken is from the best action. In Ex-
ample 7.3 the action was a price to offer, and if too much or too
little were offered, utility would be lost.
In many examples, the state of nature ()can be represented by

a number which is some parameter of the relevant probability dis-
tributions. In the cord problem (Example 7.3), () was the mean
fiber strength of the batch of fibers. The statistician will estimate
()by some number T derived from the data, i.e., he will act as
though the state of nature were T. For convenience, this action
can be labeled T.
In many real problems it is highly desirable to supplement an

estimate with some information concerning how reliable the
estimate tends to be. Frequently, the standard deviation of the
estimate can be used for this purpose. If the standard deviation
of the estimate is itself unknown but must also be estimated, it
may be convenient to use the method of confidence intervals.
Here a random interval r depending on the data Z is specified in
such a fashion that for all ()

p{r contains (}}= r
where r is some specified confidence level.

2. FORMAL STRUCTURE OF THE ESTIMATION
PROBLEM: ONE-PARAMETER CASE

We assume that the state of nature is specified by a number ().
275
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The set of available actions (called estimates) is the same as thE>
set of all possible O. The regret due to the use of the estimate T
when 0 is the state of nature is r(O, T). The strategy, denoted by
t, is called an estimator. For each possible outcome Z of the
experiment, the estimator yields an estimate

(10.1) T = t(Z).

We shall assume that r(O, T) increases as T moves further away
from 0 and r(O, T) = 0 when T = O. In particular, one possible re-
gret function is

(10.2) r(O, T) = c(O)(T - 0)'.

Then the risk function for an estimator t which yields estimates
T is given byl

(10.3) R(O, t) = c(O) E9[(T - 0)'].

Other regret functions such as c(0) IT - 0 I, are sometimes ap-
propriate and considered, but the" squared error" regret function
of Equation (10.2) is the one with which most statistical theory of
estimation is concerned. Briefly, there are three major reasons.
First, many smooth regret functions which vanish at T = 0 are
well approximated by the " squared loss" function, especially for
T close to O. Second, the mathematics involved in using this regret
function is relatively simple compared to other regret functions.
Third, for large samples, many reasonable estimators yield
estimates whose probability distributions are approximated by
normal distributions with mean O. Such distributions are com-
pletely specified by the variance of T, and the smaller the variance
the better the estimator, no matter what the regret function
may be (so long as r(O, T) increases as T moves away from 0).
In general

(10.4) R(O, t) = E9[r(0, T)] = E9[r(0, t(Z))]

but we shall devote most of our attention to the squared-error
regret function of Equation (10.2). Since c(O) E9[(T - On is small
when E9[(T - 0)'] is small, we shall be interested in

(10.5)

1 The symbol E9 represents expectation when e is the state of nature.
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Equation (10.5) is proved in deriving Consequence 11 of Appendix
E4•

3. METHODS OF ESTIMATION

In this section we shall describe three major methods of obtain-
ing estimators. The general properties of these methods will be
described in subsequent sections.
3.1. The Analogue Method or Method of Moments
Suppose that it is desired to estimate (}= E(X3

) when the data
consist of n independent observations XI>X••••• , Xn on X. Since
(} is the long-run average of X\ it seems reasonable to estimate (}
by the average of the X~for the sample. This is a special case of
the analogue metlwd which consists of estimating a parameter or
property of a prolxibility distribution by the same property of the
sample.
Thus, using the analogue method, we estimate fI = E(X) by X.

In fact we estimate
flk = E(Xk)

which is called the kth moment of X (or the kth-order moment of
X) by

which is called the kth moment of the sample. Similarly, we
estimate the variance of X

<T~ = E[(X - flx)2]

by the sample variance'

The sample median X furnishes an estimate of the population
median lJx, and p is used as an estimate of p.
Suppose that it is desired to estimate the mean of a distribution

known to be exponential. It is a fact that the mean and standard
1 We call E[(X - I"X)k) the kth population moment about the mean and1 n _

-; l~' (Xl - X)k the kth sample moment about the mean. Thus <T~ is the second
population moment about the mean.
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deviation are equal in exponential distributions (see Section 6.1,
Chapter 8). Then, should we use X, dx, or (1j2)(X + dx) as the
estimate? The analogue method is not specificon this point. How-
ever, it is frequently called the method oj moments because it is
understood that, whenever possible, the parameter should be
estimated by using moments and the lowest order moments that
are convenient. Thus X would be the appropriate estimate of the
mean of an exponential distribution.
Exercise 10.1. Use the analogue method to estimate flx + 3a-x

when (a) nothing is assumed about X and when (b) X is assumed
to have an exponential distribution.
Exercise 10.2. (a) Estimate the 25th percentile of a distribution

on the basis of the 60 observations on Wearwell tires (see Table
2.4). (b) Assuming that the distribution is normal, revise the
estimate.
3.2. The Maximum.Likelihood Method
Suppose that the sample is denoted by Z which has probability

density functionj(zl 0). If Z is observed, j(Z I0) is called the likeli-
hood of o. The maximum-likelihood method consists of estimat-
ing 0 by that number 8 which maximizes the likelihood function,
i.e., 8 is that value of the parameter with the largest likelihood.
We illustrate with a simplified example, namely, an estimation
version of Mr. Nelson's rain problem (Example 5.1).
Example 10.1. There are two possible states of nature, 0, and

O2, and j(z I 0) is given by the following table.

ZI (fair1 Z2 (dubious) Z3 (foul)

8, 0.60 0.25 0.15
82 0.20 0.30 0.50

Value of fJ 8, 82 82

If Z = z,' the likelihoods of 0, and O2 are 0.6 and 0.2, and iJ = 0,•
If Z = z., iJ = 0.. and if Z = Za, 8 = O2 since 0.30 > 0.25 and
0.50> 0.15.
This simple example differs from most estimation problems in

that it has only two possible states of nature while most estimation
problems have infinitely many possible values of o. The following
examples are more typical.
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Example 10.2. Normal Distribution With Krun.vnVariance. The
maximum-likelihood estimate of /1, the mean of a normal distri-
bution with known variance a-', based onnindependentobservations,
is X. To show this we write the likelihood

f(Z Ip) = [ ,1 . exp (-~(Xl - /1)')J
V 2;ra-' 2a-'

.[ /1 . exp(-_1 (X, - /1)')J ... [ /1 . exp( __ 1 (X, - /1)')J
V 27l'a-' 2a-' v 27l'a-' 2a-'

ji(Z I II) = 1 exp ( __ 1_ ~ (XI _ II)')
r (27l'a-,)n/, 2a-' f-1 r.

This expression is largest when t(XI - /1)' is smallest. But in
1-1

Exercise 2.18 we saw that

f.(XI - p)' = t(XI - X)' + n(X - /1)'
i=l 1 •.• 1

which is minimized when /1 is X. In other words 'j..t = X.
Example 10.3. Binomial Distribution. Let p be the probability

that a coin will fall heads. If m heads are observed in n tosses of
the coin the maximum-likelihood estimate is II = mIn. Elementary
calculus is required to prove this.
Exercise 10.3. Suppose that three possible outcomes have proba-

bilities p*, p*(1 - p*), and (1 - p*)' respectively. Present the
likelihood based on n observations in which these outcomes occur
with frequencies m]> m" and m3 respectively. Apply the result of
Example 10.3 to obtain the maximum-likelihood estimate of p*.
Example 10.4. Rectangular Distribution. See Mr. Sharp's dial

problem (Example 3.2). Suppose that X has density f given by
f(x) = 1/2/1 for 0 ~ x ~ 2/1

f(x) = 0 elsewhere.

Then /1 is the mean of the distribution. While the method of
moments would give X as the estimate based on n independent
observations, the maximum-likelihoodestimate can be shown to be
(max XI)/2, that is, one half the largest observation.

l~i;:a;n

Exercise 10.4. The data 4.4, 7.3, 9.1, 6.5, 3.6 are obtained in
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five observations on a double-exponential distribution whose
density is given by

IX-PI)2 .
Compute the maximum-likelihood estimate of p. (Hint: 2::.1Xl -a I

I

is minimized by a = X, the sample median.)
3.3. Bayes Strategies
Given an a priori distribution won the set of possible 0, the data

Z induce an a posteriori probability distribution w (w depends on
Z). Thus the state of nature is regarded as a random variable, and
r(fJ, T) may be thought of as a random quantity with a distribution
which depends upon w. There is a corresponding value of T which
minimizes the value of

B(w, T) = E*(r(O, T)].

(In this expression, E* represents expectation with respect to the
a posteriori distribution of fJ.) Of course, the value of T which

TABLE 10.1

COMPUTATION OF BAYES ESTIMATE FOR EXAMPLE 10.1
f(z 18)

Zl z. za W

81 0.60 0.25 0.15 0.61 wd(zI8l)

8. 0.20 0.30 0.50 0.4 w.J(z 18.)

r(8, T) f(z)

i-ZI 81 8. Wl

81

I
0 4

8. 3 0 w.

T

B(w, T)

Value of T

Zl I z. I Za

0.36 0.15 0.09
0.08 0.12 0.20
0.44 0.27 0.29
0.36 0.15 0.09
0.44 0.27 0.29
0.08 0.12 0.20
0.44 0.27 0.29

81 8. 81 8. 81 8.

0.24 1.44 0.36 0.60 0.60 0.36
0.44 0.44 0.27 0.27 0.29 0.29

81 81 8.

Note. We have modified the regret table from the natural estimation version
of the rain problem (Example 5.1) so that r(81, 8.) = 4 instead of 3 in order to
help the student trace the computations.
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gives this minimum will depend upon wand, thus, upon Z. In fact,
we may write

T = t(Z)

in which T denotes the minimizing value of T corresponding to the
data Z. In these terms we have defined t as a Bayes estimator.
The above definition is quite abstract out of context and so we

illustrate with Example 10.1. See Table 10.1. There we see that
the Bayes estimates corresponding to ZlJ Z" Z3 are {}u {}u and (}2'

With different a priori probabilities or regrets, the Bayes estimator
could change.
Let us study the behavior of the a posteriori distribution as the

sample size increases. Start off with an arbitrary a priori proba-
bility distribution which does not neglect any possible {}. After
each observation, compute the a posteriori probability distribution.
As more and more data are collected, the a posteriori distribution
tends to concentrate all of its probability very close to the true
value {}. We illustrate with the following example.
Example 10.5. Suppose that the probability of a coin falling

heads is p = 0.4. We simulate 20 tosses of the coin with the table
of random numbers, obtaining, H, H, T, T, T, H, T, H, T, T, H,
T,T,T,T,T,H,T,T,H.
No.wsuppose that someone gave us the a priori probability distri-

bution of p, given by

w(p) = 1
w(p) = 0

for 0::::;p :s;; 1
elsewhere

Then, using the continuous analogue of the equations of Section 3,
Chapter 6, the a posteriori probability for 0 :s;; p :s;; 1 is given by

w(p) = w(p)f(Z Ip) = 1.pm(l - p)n-m .
feZ) feZ)

The denominator feZ) must be such that the area under the
curve representing w is one. It can be proved that

feZ) = [em)! (n - m)!]/[(n + I)!],

where n! = 1 . 2 . 3 ... n represents the product of the first n
integers. In Figure 10.1 we compare the a priori probability distri-
bution with the a posteriori probability distriubtions for n = 1, 2,
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3, 10, and 20. Note that the maximum-likelihood estimate when
n = 20 is p = 0.35 but that the Bayes estimate is not defined
until the regrets r(p, T) are given.

4.0

3.5

3.0

2.5

.~2.0
'"<::.,
C 1.5

1.0

0.5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
t p

True value
Figure 10.1. A priori distribution and a posteriori distributions of p
based on the data in Example 10.5. For 0 <,p <,1

w(p) = 1

-) (n+l)! (1 )w(p = . pm _ p n-m
ml(n-m)!

3.4. Convenience of the Various Methods of Estimation
The properties of the methods of estimation will be considered

in some detail in Section 4. Here we merely remark on the con-
venience of applying these methods. The analogue method is by
far the easiest to apply. Furthermore, no knowledge of j(z I 0) is
needed to apply this method. To apply the maximum-likelihood
method or the Bayes method, j(z I0) must be specified. For the
Bayes method, some a priori probability distribution wand the
regret function r(8, T) must also be given. Ordinarily, calculus is
required to derive maximum-likelihood estimates. The Bayes
method is usually the clumsiest to apply because of the infor-
mation required. Whereas the Bayes method is mainly used as a
theoretical tool, the maximum-likelihood method is very widely
applied in practical examples.
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4. LARGE-SAMPLE PROPERTIES OF ESTIMATORS

A good estimator t is one for which T = t(Z) tends to be close to
O. To fix ideas, we repeat our assumption that the regret is ap-
proximated by

(10.2)
and
(10.3)

reO, T) = c(O)(T - 0)"

R(O, t) = c(O) Ee[(T - 0)"].

Consequently, a good estimator would be one for which

(10.5) Ee[(T - 0)"] = <T~ + [E(T) - 0]'

is small. For concreteness let us refer to the cord estimation
problem (Example 7.3) and the three estimators of the mean break-
ing strength d. To conform with the usual convention, we shall
change our notation slightly to represent the mean of the breaking
strength by p instead of O. Recall that in this problem, an obser-
vation X is normally distributed with unknown mean p and known
standard deviation <T = 8. In Figure 7.8, we compared the three
estimators tj, t" and t3 where t,(Z) = X, t2(Z) = X = sample median,
and t,(Z) = 30 irrespective of the data. For each estimator t, both
R(p, t) and E,,[(T - py] are functions of p. It is interesting that
E,,[(X - p)'] = 1, E,,[(X - p)"] = 1.57, and E,,[(30 - p)'] = (30 - fl)',
so that tj dominates t. (i.e., R(p, t,) < R(p, t,) for all fl) but t, does
not dominate the ridiculous estimator t3• In fact, for p close to 30,
R(p, t3) = c(p)(30 - fl)" < R(p, t,). In Chapter 7 we remarked that,
even though t3 is admissible, it should be discarded. This estimator
is nothing more than a guess and is disastrous if the guess is
wrong. Unless there is very strong a pri01.i evidence concerning
p, a reasonable estimator should yield an estimate T which is close
to p, no matter what p is. The estimators t1 and t. behave in this
fashion, thus even t. should be preferred to t3 in spite of the fact
that there is a somewhat better strategy than t".
To emphasize the point, let us consider the E,,[(T - p)'] for these

estimators when the sample size n is large. Then it can be shown
that

E,,[(X - p)'] = <T'/n

E,,[(X - p)'] = 1.57<T"/n
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E,,[(30 - fI)'] = (30 - fI)'.

Note that for very large n, the E,,[(T - fI)'] and, therefore, the
associated risks for X, and X are very small for all fl. This cannot
be said for the guess 30. In fact, for both X and X, the estimate
tends to be close to fI, no matter what fI is, if the sample size is
large. To formalize these properties of X and X, we shall discuss
the concept of the limit of a sequence. I Consider the sequences

{a'n} = {a" a" "', an, ... }
= {I, 1/2, 3/4, 7/S, 15/16, "', 1 - 1/2n, ••• }

and
{bn} = {bhb" ••• ,bn, ••• }

= {1/2, 3/4, 1/4, 7/S, lIS, 15/16, 1116, '" }.
The first sequence is said to have the limit one because an is very

close to one when n is very large. We write lim an = lor an -+ 1.
Graphically, if we plot a" a" •• , on a line, th~~points would tend
to cluster near the point one. If you take a small interval about
one, infinitely many terms of the sequence lie in this interval.
With {bn}, there are two points near which the bn tend to cluster.
They are ° and 1. Then lim b" does not exist. On the other hand,,,-=
we can talk about upper limits and lower limits. In fact the
sequence {b,,} has the upper limit one and lower limit zero. We
write lim bn = 1, lim bn = 0. Essentially lim bn is the greatest

(rightmost) cluster point and lim bn is the least. The limit of a

sequence exists when the upper and lower limits coincide. For
{an}, lim an = lim an = 1 and hence lim an = 1. The sequence

- n-=

{en} = {I, 1/2, 1, 1/4, 1, lIS, .•. } has zero and one as its lower and
upper limits.

Exercise 10.5. What are the lower and upper limits of
{1,0,-1,1,0, -1,1,0, -1, ... }?

Exercise 10.6. What are the lower and upper limits of
{I, 1/2, 1/4, 1, 1/4, lIS, 1, lIS, 1/16, .•• }?

I A sequence is a function defined on the set of positive integers. It is usual-
ly denoted by jan} = IaI, a., .. " an, ... }, where an is the value of the function
for the integer n and is called the nth term of the sequence. For example,
12/n} = j2, 1,2/3,"', 2/n, ... f is a sequence.
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Exercise 10.7. Find the upper and lower limits for the following
sequences.

{(-l)nln}
{(-l)n + 31n}

(d)
(e)

(a) {lin}
(b) {1/3n}
(c) {( -l)n}

In what follows we regard an estimatcyr t as a sequence of
estimators, one for each possible sample size n. For example, tl

gives X which is (Xl + X2)/2 for n = 2 and (Xl + X. + X3)/3 for
n = 3. Another example, which is slightly pathological, is t,which
gives X when n is even and X when n is odd. Still another
estimator is to, which gives Xl for n = 1 and (Xl + X.)/2 for n :::::2.
That is, to ignores all but the first two observations. When it is
important to regard an estimator as defined for one specified
sample size only, we shall so indicate. Note that

Ef'[(T, - ,u)']= cr21n if n is even
and

if n is odd.
Also

if n = 1
and

Ef'[(T5 - ,un = cr2/2 if n > 1.
DEFINITION 10.1. An estimator t is said to be a consistent esti-

mator of 0 if I

(10.6) lim Ee[(T - 0)'] = 0 for all O.

It is clear that the estimators tH t.. and t, are consistent esti-
mators of ,uwhereas t3 and to are not. Since consistent estimators
are readily obtainable in most practical problems, we shall consider
consistency as a fundamental property and restrict our attention
to consistent estimators when sample sizes are " large."
Using the guess estimator t3, we were able to make Ef'(T3- ,u)']

small at ,u= 30 at the cost of poor behavior when ,uwas far from
30. By insisting on consistent estimators, we prohibit ideal
behavior for some ,u at the expense of extremely poor behavior
elsewhere.

I In more advanced work a weaker criterion is used. This requires that
lim Pie - a < T < e + a Ie} = 1 for each a> 0 and every e. According to either
n~~
definition, T is almost sure to be close to e when n is large.
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Can we compromise to this extent? Can we find a consistent
estimator which is substantially better than X for some values of
p at the cost of being worse for other values of p? The answer to
this question is essentially "no." To be more precise, we in-
troduce the following definition.
DEFINITION 10.2. An estimator t is said to be (asymptotically)

efficient if there is no other consistent estimator t* such that

for 0 in some interval(10.7) lim E8[(T - 0)2] > 1
n~~ E8[(T. - 0)']

where T = t(Z) and T. = t*(Z).
Roughly speaking this means that, for large samples, no con-

sistent estimator can improve substantially on an efficient estimator
t for any interval of o.
Efficiency is a very strong property, but, as we shall soon see,

for most practical estimation problems efficient estimators do exist.
In particular X is efficient for estimating p in Example 7.3.
The three methods of obtaining estimators described in Section

3 can now be partially evaluated. First, all three methods yield
consistent estimators. Second, the analogue method does not
always give efficient estimators. On the other hand, both the
maximum-likelihood method and the Bayes method give efficient
estimators. In fact, if we start with any a priori probability
distribution W, which has positive density for all 0, the Bayes
estimator and the maximum-likelihood estimator will be extremely
close to one another for large samples. For this reason, the
maximum-likelihood method is often preferred since it is more
convenient to apply.
At this point we may remark that in most (but not all) appli-

cations all three methods produce estimates which are approximately
normally distrwuted with mean 0 and standard deviation of the
order of magnitude of 1h/n. 1 In Section 2 we remarked that, in
comparing estimators which are normally distributed with mean 0,
the variance of the estimator is the relevant measure, whether or
not the regret is given by c(O)(T - 0)". Thus efficiency is an

1 We say that {an} is of the order of magnitude of IJ./"n if {anj(l(./n)} is
bounded.
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important estimator property for estimation problems with large
samples and any reasonable regret function.
It is interesting that, in many of the exceptional cases where

the maximum-likelihoodestimates are not approximately normally
distributed with standard deviation of the order of magnitude of
1lvn, even better results are obtained. For example, in the case
of the rectangular distribution (Example lOA), the distribution of
the maximum-likelihood estimate is not approximately normal but
the standard deviation is of the order of magnitude of lIn, which
is considerably smaller than 1lvn.
Exercise 10.8. For Example 7.3, find

lim E~[(T - pY]
n~~ E~[(T. - p)2]

where (a) t = tIJ t* = t2; (b) t = t., t* = t.; and (c) t = tl, t* = t,.
Exercise 10.9. Modify the cord problem (Example 7.3) so that

c(O) = 1. Then R(p, t) = E~[(T - ,lin Use X to estimate p. What
sample size should you use if (T = 8 and the cost of sampling is
given by C(n) = 004 + (O.Ol)n?
Exercise 10.10. The parameter p is estimated by p. If the regret

function is (T - p)", how large a sample size is required to ensure
that the maximum value of the risk is no larger than 0.01?

5. SMALL-SAMPLE PROPERTIES OF ESTIMATORS

There are occasionswhen the large-sample theory is not appro-
priate, mainly because the sample size for a particular problem is
small. Then one may prefer to regard consistency as being irrele-
vant. What other properties not involving large samples are of
interest? In the following subsections we discuss several such
properties.
5.1. Invariance Under Transformation of Parameter
In Example 4.6. we dealt with a problem where Mr. Heath was

interested in the mode of a distribution of foot sizes so that he
could adjust his machine to produce shoes of the corresponding
size. Suppose that he estimates the mode to be 10.5. He tells the
engineer to produce shoes of size 10.5. The engineer replies that
his machine is calibrated in inches and that he must know the length
of the shoes. Mr. Heath claims that a size 12 corresponds to a foot
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12 inches long and a unit change in size represents 1/3 inch. Thus
length and size are related by L = (1/3)8 + 8. Therefore he tells
his engineer to produce shoes of length (1/3)(10.5)+ 8 = 11.5
inches.
If the modal size is called {},Mr. Heath is interested in {}* =

(1/3)0+8. Since T = 10.5 is his estimate of {}(Le., he wishes to act
as though {}= 10.5), he will have to estimate {}* by T* = (1/3)T+ 8
(Le., act as though {}* = 11.5 inches) to be consistent. In general
it seems reasonable to require that, if we estimate {}by T, we
should estimate {}* = g({}) by T* = g(T).

DEFINITION 10.3. A method of producing estimators is said to be
invariant under transformation of parameters if it leads to estimat-
ing {}* = g({}) by T* = g(T) whenever it leads to estimating {}by
T.
Further extensions of this concept of invariance would apply to

the case where the measurements of the data are changed from
one scale to another. For example, the mere fact that a French
scientist uses centimeters instead of inches to measure certain
random variables should not lead the French scientist to different
conclusions or actions than an English scientist having the same
information in inches.
The Bayes and maximum-likelihood estimators are invariant

under transformation of parameter. Because of ambiguities in-
herent in the analogue method, this method may, on occasion, fail
to be invariant.
5.2. Unbiased Estimators
In the Sheppard rifle problem (Example 4.3), we found that the

value of a which minimizes E[(X - a)'] is a = E(X). Since the
regret function

it would seem desirable to have Eo(T) = {}. If we could modify an
estimator so as to obtain Eo(T) = {}without increasing (T~, it would
be desirable to do so. However, this is not possible in general.

DEFINITION lOA. An estimator t is said to be an unbiased
estimator of {}if

(10.8) Eo(T) = {} for every {}.
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We call E9(T) - 0 the bias of t.

For large samples, consistent estimators are approximately un-
biased. Unbiased estimators are desirable when they can be
obtained without increasing IT}. Note that in Example 7.3, til t2,
t., and t5 are all unbiased estimators. Also p is an unbiased
estimate of p since Ep(f» = p. Connected with the reason that
most statisticians find it more convenient to use

1 n -
s~ = -- 2:. (Xl - X)'n -1 i-I

instead of d~ to estimate IT~ is the fact that s~ is an unbiased
estimate of IT~.

Note that, whereas E/L(X) = p,

E/L(X2
) = ITi + p' = p' + IT'ln > p'.

Thus if X is an unbiased estimate of p, X2 will be a slightly
biased estimate of p'. The criteria of unbiasedness and invariance
cannot both be simultaneously satisfied. Of the two, the invariance
criterion is definitely more fundamental.
Exercise 10.11. The Bay Cable Company was required to lay a

telephone cable across the San Francisco Bay. Never having
studied decision making in the face of uncertainty, the cable layers
estimated the amount of cable necessary to cross the bay from one
given point to another. As they were finishing their job, it turned
out that they had underestimated, for the cable slipped off the
reel and sank to the bottom of the bay. Divers were required to
raise the end of the cable, splices were made, and the job was
finished at great expense to the company.
Graph a reasonable regret function for the estimate T (using a

reel with T feet of cable) when 0 is the required length. Would a
reasonable estimator be biased or unbiased? If biased, in which
direction?
Exercise 10.12. Modify p' so as to yield an unbiased estimate of

p'.
Exercise 10.13. Prove that s' is an unbiased estimate of IT'if the

sample consists of two independent observations on a random
variable with variance IT'.
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tS.3. Sufficiency

Example 10.6. Mr. Jones desires to estimate p the probability
that a coin will fall heads. The coin is tossed n times and falls
heads m times. Mr. Jones feels that p = mIn is a good estimate
of p. It is unbiased, consistent, and asymptotically efficient. How-
ever, his friend Mr. Martin has noticed that this method complete-
ly ignores the order in which heads arid tails appear. He asks
whether Mr. Jones is really making good use of all the data. Mr.
Jones replies that this method is efficient. But, argues Mr. Martin,
there are only n = 3 observations, and this is hardly a large
sample. Mr. Jones replies that p is unbiased. Mr. Martin crossly
reminds him that, had he done his homework in statistics, the con-
cept of unbiasedness would not mean terribly much, especially for
n = 3 and a highly unspecified loss function.
After some introspection, Mr. Jones claims that everyone knows

that the order in which heads and tails fall is irrelevant. "Oh,"
replies Mr. Martin, "and how do you know this?" While Mr.
Jones was thinking this over, along came his friend, Mr. Kurt.
When Mr. Martin's question was explained to him he said: "I do
not see much point in using p as the estimate of p with a sample
of size 3. First of all, I am not convinced that you have a real
estimation problem and, if you did, I would feel unhappy about
giving out an estimate of zero just because the coin fell tails 3
times. However, in any case, whatever I did would depend on p
and not on the order in which heads and tails appeared. The reason
is essentially this: Suppose I knew that heads had appeared ex-
actly once in the three tosses, i.e., p= 1/3. Then the three possible
arrangements HTT, THT, and TTH are all equally likely (i.e.,
each have conditional probability 1/3 no matter what the value of
p). In other words, any additional information besides the fact
that heads had appeared once has a conditional probability distri-
bution which does not depend on the state of nature. Now, clearly,
information whose probability distribution does not depend on p
cannot help to estimate p. Hence, the only useful information is
the number of heads, or equivalently, p."
Suppose that T is the value of a statistic! given by T = t(Z). If
1 A statistic is any random variable which can be computed from the observ-

ed data.
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T' is the value of another statistic, and T and T' have joint density
f(x, x' I (}), then
(10.9) f(x, x' I (}) = g(x I (})h(x' Ix, (})

where g(x I(})is the density of T and h(x' Ix, (}) represents the con-
ditional density of T' given T = x.l Suppose that h(x' Ix, (}) does
not involve {}. Then, once T is known, the conditional distribution
of T' does not depend on {},and T' is irrelevant in the decision
making problem. It can be shown that this will be the case for all T'
if the density f of all the data Z can be represented as a product
as follows:

(10.10) f(Z I(})= g(T, (})h(Z).

Then it makes sense to say that T summarizes all the data of the
experiment relevant to {},and we call T a sufficient statistic.
It can be shown that, if there is a sufficient statistic for {},the

maximum-likelihood estimate will be sufficient. Furthermore, if
there is a sufficient statistic and an unbiased estimator of {},these
two can be combined under very general circumstances to give an
estimate which is (1) sufficient, (2) unbiased, and (3) has the least
variance among unbiased estimators.

6. SEVERAL PARAMETERS

Up to now we have considered only cases where the action and
the state of nature can each be represented by a single number.
In many problems, the action and the state of nature can be re-
presented by several numbers.

Example 10.7. Estimate the mean fl and the standard deviation (T

of a normal distribution on the basis of n independent observations
Xl' X., ••. , Xn•

For this problem, both the analogue method and the maximum-
likelihood method yield the same estimates of fl and (T. These are
X and dx respectively. However, for technical reasons, statis-
ticians prefer to use Sx instead of dx (for substantial n, dx and Sx
are almost equal).
In this problem, the state of nature {}can be represented by the

pair of parameters (fl, (T) where (T > O. The maximum-likelihood
I This is related to the fact that P{A and B} = P{A} P{B I A}.
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estimate of 0 is 8 = (X, dx) but the usual estimator is T = (X, sx).
Example 10.8. The six faces of a die have probability

P" P., ••• ,P6' Estimate these parameters on the basis of n obser-
vations.
If we let Pi be the proportion of observations with face i show-

ing, the analogue method suggests PI as the estimate of Pi' It is
possible to show (using calculus) that this is also the maximum-
likelihood estimate. In this example the state of nature is repre-
sented by 0 = (p" P., ••• , P6)'
The general decision making model is the following. The set ~¥

of states of nature 0 can be represented by k coordinates, i.e.,
o = (01, O2, ••• , Ok)' The best action to take if 0 were known would
depend on only h of these coordinates, and thus we label this best
action by T(O) = (01, 0., ••• , On)' For example, we might be inter-
ested in only the mean of a normal distribution with unknown
mean and standard deviation. The regret function r(O, T) increases
as T = (Tu Tt, ••• , Tn) gets farther away from T(O). In Example
10.7, a reasonable regret function might be approximated by

r(O, T) = c1(T1 - p)2 + ciT. - 0")2+ cg(T1 - p)(T. - 0")

when we act as though p were T1 and 0" were T.. The ideas of con-
sistency, efficiency, invariance, unbiasedness, and sufficiency can
be extended to this case.

7. CONFIDENCE INTERVALS: LARGE SAMPLES

To permit the possibility of hedging or to determine the extent
of hedging that would be appropriate, we require some idea of how
good an estimate is. When the sample size is large, we frequently
have the following situation. The estimate T is approximately
normally distributed with mean 0 and variance O"~ which can be
estimated by some estimate, say u~. For large sample size, u~is
close to O"~. Then UT is a measure of how good the estimate is.
Furthermore, the following equations, among others, are approxi-
mately true.

P{I T - 0 I ::::;1.96uT 10} = 0.95
P{I T - 0 I::::; 2.58uT 10} = 0.99.

Thus with probability 0.95, T will be within 1.96uT of 0 and the
interval (T - 1.96uT, T + 1.96uT) will contain O.
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Example 10.9. Binomial Case. To estimate p, we use p. Then
crp = -V p(l - p)/n which can be estimated by -vp(l - p)/n. If out
of 400 tosses, we obtain 160 heads, our estimates p and Up are 0.4
and -V (0.4)(0.6)/400 = 0.025. The interval (p - 1.96up , p + 1.96up)
is (0.351, 0.449).

DEFINITION 10.5. If r is a random interval depending on the
data Z such that

p{r contains ()I (}} = r for all ()

then r is called a r confidence interval for ().
For large samples in the situation described above, the interval

(T - 1.96uT, T + 1.96uT) is an approximate 95% confidence in-
terval.
In the Example 10.9, the approximate 95% confidence interval

corresponding to the data turned out to be (0.351, 0.449). In this
case, we may say" (0.351, 0.449) covers ()" with confidence 0.95. In
the long run, 95% of those statements which are made with con-
fidence 0.95 will be correct.
Example 10.10. If XI' X" ••• , Xn are a large sample of indepen-

dent observations on a random variable with unknown mean fl and
unknown variance cr', X is an estimate of fl with standard devi-
ation 'crx = cr/-vn. Since Sx is an estimate of cr, the corresponding
estimate of crx is sx/-vn and an approximate 95% confidence
interval for fl is (X - 1.96sx/-vn, X + 1.96sx/-vn).
Exercise 10.14. Find the approximate 95% and 98% confidence

intervals for p if: (a) p = 0.4, n = 400; (b) p = 0.1, n = 400;
(c) p = 0.5, n = 100.
Exercise 10.15. Find the 90% confidence interval for fl = E(X)

(X = 20, Sx = 5) if: (a) n = 100; (b) n = 400; (c) n = 900.

8. CONFIDENCE INTERVALS: SMALL SAMPLES

In Section 7 we defined confidence intervals and indicated a
method of obtaining approximate confidence intervals for () when
the sample size is large. There, all that is required is an estimate
T which is approximately normally distributed with mean () and
variance cr~ approximated by an estimate u~. For small sample
sizes, this approach does not work. In Section 4, Chapter 7, we
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discussed how a confidence interval for the mean of a normal
distribution with unknown mean and unknown variance could be
obtained for small samples using the t distribution.
We propose to indicate a general method of obtaining confidence

intervals for specified samples. The idea is easily represented
graphically if we assume that there is only one datum, although
the method as described applies in general. For each possible value
00 of 0, construct a test of significance level 1 - r to test Hoo: 0=00

versus the alternative that 0 *- 00, Suppose that the acceptance
set (the set of observations leading to accepting Ho.) is Aoo' Then,

(10.11) P{Z € Ano I 0o} = r for all 00,

Now let

(10.12) r = {Oo: Z € AnJ.
That is to say, let r be the set of parameter values 00 for which
the hypothesis Hoo: 0 = 00 would not be rejected by the data.
Then

(10.13) p{r contains 0 IO} = r for all 0

and r is a r confidence interval for O. This statement follows from
Equation (10.11) because

{Z:r contains 0o} = {Z:Z € Aoo}'

z

I
I
I
I
I
I
I

I I
k- .4 00 ------+I

z

1------------
r

1 _
o

Figure 10.2. Schematic representation of method of constructing con.
fidence intervals.

1. For each 80, construct accer cance set Aoo'
2. The boundaries are curves labeled CJ and C2•

3. If Z is observed, the corresponding ordinates between C1 and C2

form r.
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This definition is illustrated by the schematic representation in
Figure 10.2. In Figure 10.3, we apply the schematic represen-
tation to indicate 95% confidenceintervals for the binomial problem.

1.0

o
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

II
Figure 10.3. Ninety-five percent confidence interval for the proportion
p based on various sample sizes. (Reproduced by permission of the
authors and the editor from Clopper, C. and E. S. Pearson, ••The Use
of Confidence or Fiducial Limits Illustrated in the Case of the Binomial,"

Biometrika, Vol. 26, 1934, pp. 404-413.)

9. SUMMARY

We review briefly the one-parameter case. Here the state of
nature can be represented by a number O. The best action to take
if 0 were known can also be represented by the number 0, and
there are no hedging actions. The regret function r has values
given by r(O, T), which presumably increases as T gets further
away from O. In many problems r(O, T) not only is minimizedwhen
T = 0 but also, for fixed 0, has a graph which is approximately
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parabolic near T = O. That is, for T close to 0, r(O, T) = c(O)(T-O)2
approximately. Hence, for such examples, the risk is approximate-
ly R(O, t) = c(O) E8l(T - 0)'], where the strategy or estimator t
gives T = t(Z) as the estimate or action when data Z are observed.
Thus, a good estimator is one for which E[(T-0)2]=(T~+[E(T-0)]2
is small.
For the large-sample case, we regard an estimator as a sequence

of estimators, one for each sample size, and study the limiting be-
havior of the sequence as n -> 00. We do this to facilitate the
mathematician's job since he finds limiting behavior relatively easy
to study and so that we may obtain insight into what are reason-
able estimators for ordinary sample sizes. An estimator t is con-
sistent for estimating 0 if

for all O.

for 0 in some interval.

An estimator t is efficient if there is no other consistent estimator
t* such that

lim E&[(T. - 0)2] > 1
n-~ E8[(T - 0)2]

A method of obtaining estimators is invariant under transfm'-
mation of parameter if it yields g(T) as an estimate of g(O) when-
ever it leads to T as an estimate of O.
An estimator t is an wnlJiased estimator of 0 if

for all O.
An insistence on unbiasedness would conflict with the more

fundamental invariance property.
T is a sufficient statistic for 0 if it exhausts all the relevant in-

formation in the data. If the likelihood of the data can be decom-
posed as

f(Z 10) = g(T, 0) h(Z)

then T is sufficient for O.
The analogue method consists of estimating a parameter

(property of the probability distribution) by the analogous property
of the sample. Thus the mean of a sample is used to estimate the
mean of the population.
The maximum-likelihood method consists of estimating 0 by Ii
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which is that possible value of the parameter maximizing the likeli-
hoodj(Z 10).
All three methods considered in Section 3 usually (but not

always) yield estimates which are consistent and approximately
normally distributed with mean 0 and standard deviation of the
order of magnitude of 1/t/n. Of these methods, the analogue
method is ordinarily the easiest to apply, but does not generally
yield efficient estimates. The maximum-likelihood method is
ordinarily more difficult to apply but, in most problems, yields
efficient estimates. Furthermore, the maximum-likelihood method
is invariant under transformation of parameter and will yield a
sufficient statistic if there is one.
It is frequently important to supplement an estimate with an

evaluation of its reliability. A technique for so doing is that of
confidence intervals. A 100r% confidence interval for 0 is a random
interval r depending on the data Z such that

p{r contains 0 IO} = r for all O.

For large samples

(T - k/'T, T + k/TT)

is approximately a r confidence interval for 0 if (1) T is ap-
J)roximately normally distributed with mean 0 and standard devi-
ation aT, and (2) ky is obtained from the table of the normal
distribution according to the equation

P{IX - pi < kyo-x} = r.

For small-sample sizes, exact confidence intervals can be obtain-
ed by letting

r = {Oo: Z € A9o}

where A90 is selected for each 00 so that

P{Z € A9010o} = r.

SUGGESTED READINGS

See the readings suggested for Chapter 9.
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Notation

RANDOM VARIABLES AND STATISTICS

A number which depends on the outcome of an experiment is a
random variable. If we can compute it from observable data, it is
called a statistic. All random variables and statistics are always
indicated by boldfaced symbols. Since boldfaced symbols cannot
easily be written we recommend for use on paper or at the
blackboard that they be replaced by a corresponding symbol with
an extra line through it. For example, we can use Yi,YI, $, iP for
X, Y, s, p. We usually use capital roman letters for such symbols
but there are occasional exceptions.

PARAMETERS

A property of the relevant probability distributions or of the
state of nature is called a parameter. Parameters are usually
denoted by Greek symbols. For example, we use fl, <T, l.I, (J. An
occasional exception such as p is made for the sake of tradition.

MODIFYING SYMBOLS

Adagger (t) next to a section indicates that this section is to be
included in the course at the instructor's option.
An asterisk (*) next to an exercise indicates that this exercise is

important and should definitely be assigned to the class.
A circle (0) next to an exercise indicates that a solution of the

exercise may require mathematical knowledge beyond the material
usually covered in two years of high schoolmathematics.
A bar above a letter usually stands for the sample mean such as

X. We sometimes use it as an abbreviation for a point such as
U = (x, y, z).
A breve above a letter stands for the sample median such as X.

298
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A circumflex is used for an estimate, usually for a maximum-

likelihood estimate, e. g., p, 8.
A tilde is used to denote the complement of a set. Thus E is the

set of elements not in E.
The symbols following a vertical bar represent an assumed condi-

tion or state of nature. For example, P{A IB} is the conditional
probability of A given B, and fez I0) represents the probability
density function of Z when 0 is the state of nature.

GLOSSARY OF LETTERS

The following is a highly detailed list of almost every letter which
occurs with a special symbolic significance in this text. In
studying the text, this glossary should not be often necessary.
Few of these letters occur frequently. In no section of the book
do many distinct symbols occur simultaneously. In context, the
meaning of the symbols should ordinarily be clear. However,
students who use this book for reference or for a brief review may
find the following list occasionally helpful.

Lower Case Letters
a action
d sample standard deviation
d2 sample variance
f probability density function!, f(x), fez I0)
f observed frequency
l loss function, leO, a)
m slope
In binomial random variable (e.g., numbers of heads in n

tosses of a coin)
n sample size
p probability
p observed proportion
r regret, reO, a)
s strategy, s(Z)
s sample standard deviation2

! If a symbol represents a function, the value of this function will be indicated to
show the set on which the function is defined. Thus the value/ex) of the probability
density function is indicated.
2 8 is related to d by 8 = d./ n/(n - 1). Statisticians generally prefer to use 8.



300 ELEMENT ARY DECISION THEORY

s' sample variance
t estimator
tn the t distribution with n degrees of freedom
u utility function, u(P)
it point
w set of weights or of a priori probabilities
w set of a posteriori probabilities
x possible value of a random variable X
z possible value for the entire collection of data Z

Capital Letters

A, acceptance set for H,
A action taken, A = s(Z)
B risk corresponding to the a priori probability; B(w, a)
E set or expectation (Eo represents expectation when 8 is the

state of nature)
F cumulative probability distribution function (cdf), F(x)
F sample cumulative frequency function, F(x)
H history or hypothesis
L expected loss, L(8, s)
N random size of sample
P probability or point or prospect
R risk, R(8, s)
T estimate
T value of estimator t
X random variable
Z collection of data

Capital Script Letters

gJ Bayes risk corresponding to the best action in a no-data
problem, gJ (w)

~ Bayes risk corresponding to the a posteriori probability;
~ = gJ(w)

.9? weighted average of expected losses, .9?(s)
JV set of states of nature
9£! weighted average of risks, 9£!(s)
ff a set of tests
% set of possible outcomes of an experiment
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a (alpha)
r (gamma)
e (epsilon)
~ (lambda)
o (theta)
(J

iJ
p (mu)
(T (sigma)
(T2

'2q

J.i (nu)
r (gamma)
~ (sigma)

action probability, a.(O, a)
confidence coefficient
error probabilities, e(O, s)
likelihood ratio, ~(Z)
state of nature
o considered as random for computing a posteriori
probabilities
maximum-likelihood estimate of 0
population mean
population standard deviation
population variance
estimated value of variance
median
confidence set
summation

SYMBOLS USED IN SET NOTATION

U union (or)
n intersection (and)
cf> null set
e "is an element of"
{x: x has a given property} the set of elements with a given

property
(a, b) the interval between a and b (not including the end points)

max (x, y, z, ••• )

min (x, y, z, •.• )

MISCELLANEOUS

represents .the largest of the numbers
x, y, z, ••.
represents .the smallest of the numbers
x, y, z, ...
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Short Table of Squares and Square Roots
n n2 ./n vlOn n n2 Vn ./1On

1 1 1.000 000 3.16228 51 2601 7.141428 22.58318
2 4 1.414214 4.47214 52 2704 7.211103 22.80351
3 9 1.732051 5.47723 53 2809 7.280110 23.02173
4 16 2.000000 6.32456 54 2916 7.348469 23.23790
5 25 2.236068 7.07107 55 3025 7.416198 23.45208

6 36 2.449490 7.74597 56 3136 7.483315 23.66432
7 49 2.645751 8.36660 57 3249 7.549834 23.87467
8 64 2.828427 8.94427 58 3364 7.615773 24.08319
9 81 3.000000 9.48683 59 3481 7.681146 24.28992
10 100 3.162278 10.00000 60 3600 7.745967 24.49490
11 121 3.316625 10.48809 61 3721 7.810250 24.69818
12 144 3.464102 10.95445 62 3844 7.874008 24.89980
13 169 3.605551 11.40175 63 3969 7.937254 25.09980
14 196 3.741657 11.83216 64 4096 8.000000 25.29822
15 225 3.872 983 12.24745 65 4225 8.062258 25.49510

16 256 4.000000 12.64911 66 4356 8.124038 25.69047
17 289 4.123106 13.03840 67 4489 8.185353 25.88436
18 324 4.242641 13.41641 68 4624 8.246211 26.07681
19 361 4.358899 13.78405 69 4761 8.306624 26.26785
20 400 4.472 136 14.14214 ,0 4900 8.366600 26.45751

21 441 4.582576 14.49138 71 5041 8.426150 26.64583
22 484 4.690416 14.83240 72 5184 8.485281 26.83282
23 529 4.795832 15.16575 73 5329 8.544004 27.01851
24 576 4.898979 15.49193 74 5476 8.602325 27.20294
25 625 5.000000 15.81139 75 5625 8.660254 27.38613

26 676 5.099020 16.12452 76 5776 8.717798 27.56810
27 729 5.196152 16.43168 77 5929 8.774964 27.74887
28 784 5.291503 16.73320 78 6084 8.831761 27.92848
29 841 5.385165 17.02939 79 6241 8.888194 28.10694
30 900 5.477 226 17.32051 80 6400 8.944272 28.28427

31 961 5.567764 17.60682 81 6561 9.000000 28.46050
32 1024 5.656854 17.88854 82 6724 9.055385 28.63564
33 1089 5.744563 18.16590 83 6889 9.110434 28.80972
34 1156 5.830952 18.43909 84 7056 9.165151 28.98275
35 1225 5.916080 18.70829 85 7225 9.219544 29.15476

36 1296 6.000000 18.97367 86 7396 9.273618 29.32576
37 1369 6.082763 19.23538 87 7569 9.327379 29.49576
38 1444 6.164414 19.49359 88 7744 9.380832 29.66479
39 1521 6.244998 19.74842 89 7921 9.433981 29.83287
40 1600 6.324555 20.00000 90 8100 9.486833 30.00000

41 1681 6.403124 20.24846 91 8281 9.539392 30.16621
42 1764 6.480741 20.49390 92 8464 9.591663 30.33150
43 1849 6.557439 20.73644 93 8649 9.643651 30.49590
44 1936 6.633250 20.97618 94 8836 9.695360 30.65942
45 2025 6.708204 21.21320 95 9025 9.746794 30.82207
46 2116 6.782330 21.44761 96 9216 9.797959 30.98387
47 2209 6.855655 21.67948 97 9409 9.848858 31.14482
48 2304 6.928203 21.90890 98 9604 9.899495 31.30495
49 2401 7.000 000 22.13594 99 9801 9.949874 31.46427
50 2500 7.071 068 22.36068 100 10000 10.000000 31.62278
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Logarithms
N 0 2 3 4 5 6 7 8 9

10 0000 0043 0086 0128 0170 0212 0253 0294 0334 0374
11 0414 0453 0492 0531 0569 0607 0645 0682 0719 0755
12 0792 0828 0864 0899 0934 0969 1004 1038 1072 1106
13 1139 1173 1206 1239 1271 1303 1335 1367 1399 1430
14 1461 1492 1523 1553 1584 1614 1644 1673 1703 1732
15 1761 1790 1818 1847 1875 1903 1931 1959 1987 2014
16 2041 2068 2095 2122 2148 2175 2201 2227 2253 2279
17 2304 2330 2355 2380 2405 2430 2455 2480 2504 2529
18 2553 2577 2601 2625 2648 2672 2695 2718 2742 2765
19 2788 2810 2833 2856 2878 2900 2923 2945 2967 2989
20 3010 3032 3054 3075 3096 3118 3139 3160 3181 3201
21 3222 3243 3263 3284 3304 3324 3345 3365 3385 3404
22 3424 3444 3464 3483 3502 3522 3541 3560 3579 3598
23 3617 3636 3655 3674 3692 3711 3729 3747 3766 3784
24 3802 3820 3838 3856 3874 3892 3909 3927 3945 3962
25 3979 3997 4014 4031 4048 4065 4082 4099 4116 4133
26 4150 4166 4183 4200 4216 4232 4249 4265 4281 4298
27 4314 4330 4346 4362 4378 4393 4409 4425 4440 4456
28 4472 4487 4502 4518 4533 4548 4564 4579 4594 4609
29 4624 4639 4654 4669 4683 4698 4713 4728 4742 4757
30 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900
31 4914 4928 4942 4955 4969 4983 4997 5011 5024 5038
32 5051 5065 5079 5092 5105 5119 5132 5145 5159 5172
33 5185 5198 5211 5224 5237 5250 5263 5276 5289 5302
34- 5315 5328 5340 5353 5366 5378 5391 5403 5416 5428
35 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551
36 5563 5575 5587 5599 5611 5623 5635 5647 5658 5670
37 5682 5694 5705 5717 5729 5740 5752 5763 5775 5786
38 5798 5809 5821 5832 5843 5855 5866 5877 5888 5899
39 5911 5922 5933 5944 5955 5966 5977 5988 5999 6010
40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117
41 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222
42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325
43 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425
44 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522
45 6532 6542 6551 6561 6571 6580 6590 6599 6609 6618
46 6628 6637 6646 6656 6665 6675 6684 6693 6702 6712
47 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803
48 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893
49 6902 6911 6920 6928 6937 6946 6955 6964 6972 6981
50 6990 6998 7007 7016 7024 7033 7042 7050 7059 7067
51 7016 7084 7093 7101 7110 7118 7126 7135 7143 7152
52 7160 7168 7177 7185 7193 7202 7210 7218 7226 7235
53 7243 7251 7259 7267 7275 7284 7292 7300 7308 7316
54 7324 7332 7340 7348 7356 7364 7372 7380 7388 7396
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N 0 1 2 3 4 5 6 7 8 9

55 7404 7412 7419 7427 7435 7443 7451 7459 7466 7474
56 7482 7490 7497 7505 7513 7520 7528 7536 7543 7551
57 7559 7566 7574 7582 7589 7597 7604 7612 7619 7627
58 7634 7642 7649 7657 7664 7672 7679 7686 7694 7701
59 7709 7716 7723 7731 7738 7745 7752 7760 7767 7774
60 7782 7789 7796 7803 7810 7818 7825 7832 7839 7846
61 7853 7860 7868 7875 7882 7889 7896 7903 7910 7917
62 7924 7931 7938 7945 7952 7959 7966 7973 7980 7987
63 7993 8000 8007 8014 8021 8028 8035 8041 8048 8055
64 8062 8069 8075 8082 8089 8096 8102 8109 8116 8122
65 8129 8136 8142 8149 8156 8162 8169 8176 8182 8189
66 8195 8202 8209 8215 8222 8228 8235 8241 8248 8254
67 8261 8267 8274 8280 8287 8293 8299 8306 8312 8319
68 8325 8331 8338 8344 8351 8357 8363 8370 8376 8382
69 8388 8395 8401 8407 8414 8420 8426 8432 8439 8445
70 8451 8457 8463 8470 8476 8482 8488 8494 8500 8506
71 8513 8519 8525 8531 8537 8543 8549 8555 8561 8567
72 8573 8579 8585 8591 8597 8603 8609 8615 8621 8627
73 8633 8639 8645 8651 5657 8663 8669 8675 8681 8686
74 8692 8698 8704 8710 8716 8722 8727 8733 8739 8745
75 8751 8756 8762 8768 8774 8779 8785 8791 8797 8802
76 8808 8814 8820 8825 8831 8837 8842 8848 8854 8859
77 8865 8871 8876 8882 8887 8893 8899 8904 8910 8915
78 8921 8927 8932 8988 8943 8949 8954 8960 8965 8971
79 8976 8982 8987 8993 8998 9004 9009 9015 9020 9025
80 9031 9036 9042 9047 9053 9058 9063 9069 9074 9079
81 9085 9090 9096 9101 9106 9112 9117 9122 9128 9133
82 9138 9143 9149 9154 9159 9165 9170 9175 9180 9186
83 9191 9196 9201 9206 9212 9217 9222 9227 9232 9238
84 9243 9248 9253 9258 9263 9269 9274 9279 9284 9289
85 9294 9299 9304 9309 9315 9320 9325 9330 9335 9340
86 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390
87 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440
88 9445 9450 9455 9460 9465 9469 9474 9479 9484 9489
89 9494 9499 9504 9509 9513 9518 9523 9528 9533 9538
90 9542 9547 9552 9557 9562 9566 9571 9576 9581 9586
91 9590 9595 9600 9605 9609 9614 9619 9624 9628 9633
92 9638 9643 9647 9652 9657 9661 9666 9671 9675 9680
93 9685 9689 9694 9699 9703 9708 9713 9717 9722 9727
94 9731 9736 9741 9745 9750 9754 9759 9763 9768 9773
95 9777 9782 9786 9791 9795 9800 9805 9809 9814 9818
96 9823 9827 9832 9836 9841 9845 9850 9854 9859 9863
97 9868 9872 9877 9881 9886 9890 9894 9899 9903 9908
98 9912 9917 9921 9926 9930 9934 9939 9943 9948 9952
99 9956 9961 9965 9969 9974 9978 9983 9987 9991 9996
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Table of Random Digits

03 47 43 73 86 36 96 47 36 61 46 98 63 71 62 33 26 16 80 45 60 11 14 10 95
97 74 24 67 62 42 81 14 57 20 42 53 32 37 32 27 07 36 07 51 24 51 79 89 73
16 76 62 27 66 56 50 26 71 07 32 90 79 78 53 i3 55 38 58 59 88 97 54 14 10
12 56 85 99 26 96 96 68 27 31 05 03 72 93 15 57 12 10 14 21 88 26 49 81 76
55 59 56 35 64 38 54 82 46 22 31 62 43 09 90 06 18 44 32 53 23 83 01 30 30

16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64
84 42 17 53 31 5724550688 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 fi602 79 54
5760863244 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28

18 18 07 92 46 44 17 16 58 09 79 83 86 19 62 06 76 50 03 10 55 23 64 05 05
26 62 38 97 75 84 16 07 44 99 83 11 46 32 24 20 14 85 88 45 10 93 72 88 71
23 42 40 64 74 82 97 77 77 81 07 45 32 14 08 32 98 94 07 72 93 85 79 10 75
52 36 28 19 95 50 92 26 11 97 00 56 76 31 38 80 22 02 53 53 86 60 42 04 53
37 85 94 35 12 83 39 50 08 30 4234079688 54 42 06 87 98 35 85 29 48 39

7029 17 12 13 40 33 20 38 26 13 89 51 03 74 17 76 37 13 04 07 74 21 19 30
56 62 18 37 35 96 83 50 87 75 97 12 25 93 47 70 33 24 03 54 9777464480
99 49 57 22 77 88 42 95 45 72 16 64 36 16 00 04 43 18 66 79 94 77 24 21 90
16 08 15 04 72 33 27 14 34 09 45 59 34 68 49 12 72 07 34 45 99 27 72 95 14
31 16 93 32 43 50 27 89 87 19 20 15 37 00 49 52 85 66 60 44 38 68 88 11 80

68 34 30 13 70 55 74 30 77 40 44 22 78 84 26 04 33 46 09 52 68 07 97 06 57
74 57 25 65 76 59 29 97 68 60 71 91 38 67 54 13 58 18 24 76 15 54 55 95 52
27 42 37 86 53 48 55 90 65 72 96 57 69 36 10 96 46 92 4245 97 60 49 04 91
00 39 68 29 61 66 37 32 20 30 77 84 57 03 29 10 45 65 04 26 11 04 96 67 24
29 94 98 94 24 68 49 69 10 82 53 75 91 93 30 34 25 20 57 27 40 48 73 51 92

16 90 82 66 59 83 62 64 11 12 67 19 00 71 74 60 47 21 29 68 02 02 37 03 31
11 27 94 75 06 06 09 19 74 66 02 94 37 34 02 76 70 90 30 86 38 45 94 30 38
35 24 10 16 20 33 32 51 26 38 79 78 45 04 91 16 92 53 56 16 02 75 50 95 98
38 23 16 86 38 42 38 97 01 50 87 75 66 81 41 40 01 74 91 62 48 51 84 08 32
31 96 25 91 47 9644 33 49 13 34 86 82 53 91 00 52 43 48 85 27 55 26 89 62
66 67 40 67 14 6405 71 95 86 11 05 65 09 68 76 83 20 37 90 57 16 00 11 66
14 90 84 45 11 7573880590 52 27 41 14 86 22 98 12 22 08 07 52 74 95 80
68 05 51 18 00 33 96 02 75 19 07 60 62 93 55 59 33 82 43 90 4937384459
2046787390 97 51 40 14 02 04 02 33 31 08 39 54 16 49 36 47 95 93 13 30
64 19 58 97 79 15 06 15 93 20 01 90 10 75 06 40 78 78 89 62 02 67 74 17 33

05 26 93 70 60 22 35 85 15 13 92 03 51 59 77 59 56 78 06 83 52 91 05 70 74
07 97 1088 23 0998429964 61 71 62 99 15 0651 29 1693 58 05 77 09 51
68 71 86 85 85 54 87 66 47 54 73 32 08 11 12 44 95 92 63 16 29 56 24 29 48
26 99 61 65 53 58 37 78 80 70 42 10 50 67 42 32 17 55 85 74 94 44 67 16 94
14 65 52 68 75 87 59 36 22 41 26 78 63 06 55 13 08 27 01 50 15 29 39 39 43

Source: Abridged from Table XXXIII of Fisher and Yates, Statistical Tables/or
Biological, Agricultural, and Medical Research, published by Oliver and Boyd Ltd.,
Edinburgh, by permission of the authors and publishers.
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APPENDIX C.
Table of Random Normal Deviates

2 3 4 5 6 7 8

-0.538 +0.424 -0.527 +2.040 +0.835 +0.230 -0.476 +0.157
-0.211 +1.670 -1.018 -1.082 +0.584 +0.089 -1.126 -0.615
-0.604 +0.669 -0.410 -0.594 -0.366 -0.880 +0.499 +0.736
-1.590 +0.062 -1.220 +0.281 +0.255 +0.888 -0.194 +1.163
-0.597 +1.368 -1.078 +1.296 +0.525 +0.282 +1.183 +0.371

+0.220 -0.290 -0.003 -0.971 -0.547 +0.297 +0.261 -0.316
+1.449 -0.395 -0.413 +0.111 +1.145 +0.261 +0.012 -0.336
-0.841 +0.786 -0.954 +0.676 -1.726 +0.107 + 1.155 +0.556
+1.714 -0.573 + 1.578 -0.340 -0.645 +1.185 -0.858 +0.399
+0.932 -1.003 -0.867 +0.007 -0.406 +0.550 -0.256 +0.568

+0.168 -0.382 +1.454 +0.331 +0.357 +0.615 +0.806 +0.787
-1.271 +0.493 -1.169 +0.402 -0.762 + 0.003 -1.454 -0.705
+0.479 +0.028 +0.173 -0.312 +0.629 -0.403 +0.964 +0.367
-0.827 -0.770 -0.030 +0.627 -0.288 -1.015 +0.243 + 0.120
+0.142 -0.059 -0.639 +0.071 -0.888 +0.385 + 0.188 + 1.723

-0.124 -0.912 -0.443 -0.255 +1.631 -0.192 -0.573 +2.616
-0.658 +0.378 +0.174 +1.480 +0.726 -0.967 +0.108 +0.725
+0.501 -0.224 +0.625 +0.483 -1.189 +0.592 -1.137 +0.021
+0.931 -0.221 -0.219 +1.645 +0.168 -0.271 +0.238 -0.435
+0.811 -0.329 +0.239 +1.983 -0.317 -0.199 -0.001 +1.105

+1.543 +0.561 -0.461 -1.449 -0.537 -1.274 +0.350 -0.127
-0.403 +0.330 +0.260 +1.542 -0.428 -1.242 -1.050 -0.050
+1.238 -0.981 +0.018 -1.504 +0.388 -1.330 -0.100 +0.178
+1.423 +1.473 -0.584 +0.553 -0.239 -0.816 +0.331 -0.648
+0.766 -0.316 -0.555 +0.724 -2.360 +0.528 -1.123 -0.861

+1.947 +1.873 +0.625 -2.930 +1.720 -0.897 -2.270 -0.879
+1.573 +1.412 +1.169 +1.535 -0.085 -1.756 +0.445 +0.142
-1.186 -0.366 +0.251 -0.508 +1.290 +0.153 -0.723 +0.894
-1.470 -0.251 -0.239 -1.015 -0.965 -1.091 +0.061 -0.144
+0.345 -0.254 -0.307 -0.780 +0.909 -0.122 +0.345 -0.390

-1.074 +0.569 -0.343 -0.980 -1.254 -0.401 -0.141 -0.500
+0.537 +1.273 +0.528 +0.170 +0.697 +0.436 -0.925 -0.481
-0.456 -0.310 -1.379 +1.312 +1.207 +0.043 +1.008 +1.351
+0.814 -0.017 +0.190 +0.295 +0.403 +1.081 -0.406 +1.325
+1.160 -0.382 +1.268 -1.419 +0.354 +2.760 -0.638 +0.249

-0.383 +0.605 +1.147 -0.390 -0.897 -0.704 -0.358 +0.045
-2.007 -0.411 +2.080 +0.423 +1.930 -0.969 +1.377 -1.079
-0.522 +1.043 +0.596 +1.563 -0.294 -1.463 -2.448 -0.485
+0.671 -2.022 +0.814 -0.722 -0.333 -0.024 -0.680 -0.288
+0.047 -0.906 -0.766 +1.540 -1.615 -0.873 -0.919 -0.813

Source: Abridged from P. C. Mahalanobis, "Tables of Random Samples From
a Normal Population," Sankhyli, Vol. I, pp. 289-328, by permission of the author and
publishers.
The numbers in this table are independent observations Xl, X., ... from a normal

population with mean p. = 0 and standard deviation 11 = 1. To obtain random varia-
bles YJ, Y2, ••• from a normal population with arbitrary mean p. and standard devia-
tion rI let Y/ = p. + "X/.
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APPENDIX D1

Areas Under the Normal Curve From
fl + aCT to (Xl

p. p. + aCT

al 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121

0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681

1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233

2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
2.3 0.0107 0.0104 0.0102 0.00990 0.00964 0.00939 0.00914 0.00889 0.00866 0.00842
2.4 0.008200.007980.007760.007550.007340.007140.006950.00676 0.00657 0.00639

2.5 0.00621 0.00604 0.00587 0.00570 0.00554 0.00539 0.00523 0.00508 0.00494 0.00480
2.6 0.00466 0.00453 0.00440 0.00427 0.00415 0.00402 0.003910.003790.003680.00357
2.7 0.003470.003360.003260.003170.003070.002980.00289 0.00280 0.00272 0.00264
2.8 0.002560.002480.002400.002330.002260.002190.00212 0.00205 0.00199 0.00193
2.9 0.001870.001810.001750.001690.001640.001590.00154 0.00149 0.00144 0.00139

al 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

3 0.00135 O.()3968 0.03687 O.()3483 O.()3337 0.03233 0.03159 0.03108 0.0'723 0.0'481
4 0.0'317 0.0'207 0.0'133 0.05854 0.05541 0.()3340 0.0.211 0.05130 0.06793 0.0"479
5 0.06287 0.06170 0.0'996 0.07579 0.07333 0.07190 0.07107 0.OB599 0.08332 0.03182
6 0.09987 0.09530 0.09282 0.09149 0.01°777 0.01°402 0.01°206 0.01°104 0.Otl523 0.Otl260

Source: Reproduced by permission from Tables of Areas in Two Tails and in
One Tail of the Normal Curve, by Frederick E. Croxton. Copyright, 1949, by
Prentice. Hall, Inc., Englewood Cliffs, N. ].
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APPENDIX Di

Chi Square Distribution

4
VALUES OF Xi FOR VARIOUS VALUES OF P AND DEGREES OF FREEDOM n

P

Degrees of 0.99 0.95 0.50 0.20 0.10 0.05 0.02 0.01Freedom n

1 0.000157 0.00393 0.455 1.642 2.706 3.841 5.412 6.6352 0.0201 0.103 1.386 3.219 4.605 5.991 7.824 9.2103 0.115 0.352 2.366 4.642 6.251 7.815 9.837 11.3414 0.297 0.711 3.357 5.989 7.779 9.488 11.668 13.2775 0.554 1.145 4.351 7.289 9.236 11.070 13.388 15.086
6 0.872 1.635 5.348 8.558 10.645 12.592 15.033 16.8127 1.239 2.167 6.346 9.803 12.017 14.067 16.622 18.475
8 1.646 2.733 7.344 11.030 13.362 15.507 18.168 20.090
9 2.088 3.325 8.343 12.242 14.684 16.919 19.679 21.666
10 2.558 3.940 9.343 13.442 15.987 18.307 21.161 23.209
11 3.053 4.575 10.341 14.631 17.275 19.675 22.618 24.725
12 3.571 5.226 11.340 15.812 18.549 21.026 24.054 26.217
13 4.107 5.892 12.340 16.985 19.812 22.362 25.472 27.688
14 4.660 6.571 13.339 18.151 21.064 23.685 26.873 29.141
15 5.229 7.261 14.339 19.311 22.307 24.996 28.259 30.578
16 5.812 7.962 15.338 20.465 23.542 26.296 29.633 32.000
17 6.408 8.672 16.338 21.615 24.769 27.587 30.995 33.409
18 7.015 9.390 17.338 22.760 25.989 28.869 32.346 34.805
19 7.633 10.117 18.338 23.900 27.204 30.144 33.687 36.19120 8.260 10.851 19.337 25.038 28.412 31.410 35.020 37.566
21 8.897 11.591 20.337 26.171 29.615 32.671 36.343 38.932
22 9.542 12.338 21.337 27.301 30.813 33.924 37.659 40.289
23 10.196 13.091 22.337 28.429 32.007 35.172 38.968 41.638
24 10.856 13.848 23.337 29.553 33.196 36.415 40.270 42.98025 11.524 14.611 24.337 30.675 34.382 37.652 41.566 44.314
26 12.198 15.379 25.336 31.795 35.563 38.885 42.856 45.64227 12.879 16.151 26.336 32.912 36.741 40.113 44.140 46.96328 13.565 16.928 27.336 34.027 37.916 41.337 45.419 48.27829 14.256 17.708 28.336 35.139 39.087 42.557 46.693 49.58830 14.953 18.493 29.336 36.250 40.256 43.773 47.962 50.892

Source: Abridged from Table IV of Fisher and Yates, Statistical Tablesfor
Biological, Agricultural, and Medical Research, published by Oliver and Boyd,
Ltd.,Edinburgh, and from Catherine M. Thompson, Biometrika, Vol. XXXII, Part II,
October 1941, pp. 187-191, "Tables of Percentage Points of the X'f Distribution,"
by permission of the authors and publishers.
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APPENDIX D3

Exponential Distribution

Density

a P{X>aJ.L} a P{X>aJ.L} a P{X>aJ.L}

0.00 1.00000o 1.60 0.201897 3.40 0.033373
0.01 0.990050 1.65 0.192050 3.45 0.031746
0.02 0.980199 1.70 0.182684 3.50 0.030197
0.03 0.970446 1.75 0.173774 3.55 0.028725
0.04 0.960789 1.80 0.165299 3.60 0.027324
0.05 0.951229 1.85 0.157237 3.65 0.025991
0.10 0.904837 1.90 0.149569 3.70 0.024724
0.15 0.860708 1.95 0.142274 3.75 0.023518
0.20 0.818731 2.00 0.135335 3.80 0.022371
0.25 0.778801 2.05 0.128735 3.85 0.021280
0.30 0.740818 2.10 0.122456 3.90 0.020242
0.35 0.704688 2.15 0.116484 3.95 0.019255
0.40 0.670320 2.20 0.110803 4.00 0.018316
0.45 0.637628 2.25 0.105399 4.05 0.017422
0.50 0.606531 2.30 0.100259 4.10 0.016573
0.55 0.576950 2.35 0.095369 4.15 0.015764
0.60 0.548812 2.40 0.090718 4.20 0.014996
0.65 0.522046 2.45 0.086294 4.25 0.014264
0.70 0.496585 2.50 0.082085 4.30 0.013569
0.75 0.472367 2.55 0.078085 4.35 0.012907
0.80 0.449329 2.60 0.074274 4.40 0.012277
0.85 0.427415 2.65 0.070651 4.45 0.011679
0.90 0.406570 2.70 0.067206 4.50 0.011109
0.95 0.386741 2.75 0.063928 4.55 0.010567
1.00 0.367879 2.80 0.060810 4.60 0.010052
1.05 0.349938 2.85 0.057844 4.65 0.009562
1.10 0.332871 2.90 0.055023 4.70 0.009095
1.15 0.316637 2.95 0.052340 4.75 0.008652
1.20 0.301194 3.00 0.049787 4.80 0.008230
1.25 0.286505 3.05 0.047359 4.85 0.007828
1.30 0.272532 3.10 0.045049 4.90 0.007447
1.35 0.259240 3.15 0.042852 4.95 0.007083
1.40 0.246597 3.20 0.040762 5.00 0.006738
1.45 0.234570 3.25 0.038774 5.50 0.004087
1.50 0.223130 3.30 0.036883 6.00 0.002479
1.55 0.212248 3.35 0.035084
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Student's t Distribution

VALVES OF t CORRESPONDINGTO GIVEN VALVES OF P
AND n DEGREES OF FREEDOM

P

Degrees of 0.005 0.01 0.025 0.05 0.10 0.25Freedomn

1 63.657 31.821 12.706 6.314 3.078 1.000
2 9.925 6.965 4.303 2.920 1.886 0.816
3 5.841 4.541 3.182 2.353 1.638 0.765
4 4.604 3.747 2.776 2.132 1.533 0.741
5 4.032 3.365 2.571 2.015 1.476 0.727
6 3.707 3.143 2.447 1.943 1.440 0.718
7 3.499 2.998 2.365 1.895 1.415 0.711
8 3.355 2.896 2.306 1.860 1.397 0.706
9 3.250 2.821 2.262 1.833 1.383 0.703
10 3.169 2.764 2.228 1.812 1.372 0.700
11 3.106 2.718 2.201 1.796 1.363 0.697
12 3.055 2.681 2.179 1.782 1.356 0.695
13 3.012 2.650 2.160 1.771 1.350 0.694
14 2.977 2.624 2.145 1.761 1.345 0.692
15 2.947 2.602 2.131 1.753 1.341 0.691
16 2.921 2.583 2.120 1.746 1.337 0.690
17 2.898 2.567 2.110 1.740 1.333 0.689
18 2.878 2.552 2.101 1.734 1.330 0.688
19 2.861 2.539 2.093 1.729 1.328 0.688
20 2.845 2.528 2.086 1.725 1.325 0.687
21 2.831 2.518 2.080 1.721 1.323 0.686
22 2.819 2.508 2.074 1.717 1.321 0.686
23 2.807 2.500 2.069 1.714 1.319 0.685
24 2.797 2.492 2.064 1.711 1.318 0.685
25 2.787 2.485 2.060 1.708 1.316 0.684
26 2.779 2.479 2.056 1.706 1.315 0.684
27 2.771 2.473 2.052 1.703 1.314 0.684
28 2.763 2.467 2.048 1.701 1.313 0.683
29 2.756 2.462 2.045 1.699 1.311 0.683
30 2.750 2.457 2.042 1.697 1.310 0.683

2.576 2.326 1.960 1.645 1.282 0.674

Source: Adapted from Table 111 of Fisher and Yates, Statistical Tables for
Biological, Agricultural, and Medical Research, published by Oliver and Boyd,
Ltd., Edinburgh, by permission of the authors and publishers.
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APPENDIX El

Derivation of an Equation
For the Sample Variance

1 n -
di =- L. (XI - X)' ,n 1=1 .

f. (XI - X)' = (Xl - X)' + (X, - X)' + ... + (Xn - X)'
1-1

=Xi - 2XIX + X'+ X~- 2X.X + X' + ...
, + X~ - 2XnX + X'

= (Xf+ X~+ ... + X;) - 2X(Xl + X, + ... + Xn)

+ X' + X' + ... + X'
= t Xi - 2X(f. Xl) + nX'.

1-1 1=1

But t Xl = nX, and soI_I

f. (Xl - X)' = f. Xi - 2nX' + nX' = '£ Xi - nX'
1=1 I_I I_I

and

d~ = .l i:. (XI - X)' = (.l i:.Xi) - X'.n 1=1 n 1-1

311



A P PEN D I X E,

Simplified Computation Scheme for
the Sample Mean and Variance
Using Grouped Data

We indicate here why the simplified scheme of Section 7, Chapter
2 works. Let W be defined by X = a + bW. Then when W = 0,
X = a, and when W changes by one, X changes by b. Since a is a
cell mid-point and b is the cell length for the X, the mid-point
values w, of Ware ... -2, -1,0,1,2, ... and correspond to the
X,. First we compute W and d~. Assuming for simplicity that all
f, observations in the ith cell are at the mid-point (Le., W = Wi)'
there are f, observations w,' f. observations w., etc. The sum of
these observations

n2:w, = W, + w, + ... + w, + w. + ... + w. + ...
,~l' - '--------..--------'

i, times i. times

+ Wk + ... + Wk~
ik times

n k2:w, = f,w, + f,w, + ... + fkwk = 2: f,w,
t=l 1=1

and

Similarly
n k

L.W: = f,wr + f.w~+ ... + fkwi = L. fM:'~l '-1
and applying Equation (2.12),

d • - 1 -6 fw' w-.W --..L.J.' ,- .
n '-1

Since X = a + bW, Equation (2.15) yields X = a + bW and dx =
bdw•
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by Axiom 3.
by Axiom 2.

APPENDIX E3

Axioms of Probability

Let % be the set of possible outcomes for an experiment. The
probability distribution for the experiment is a function P on the
subsets of % to the numbers between 0 and 1, which satisfies the
following axioms. These axioms seem relevant for our long-run
frequency interpretation of probability.
Axiom 1. 0 ~ P{A}
Axiom 2. P{%} = 1
Axiom 3. P{A1 or A. or ... }= P{A1} +P{A.} + ... if AHA., •••

are nonoverlapping.
From these axioms the following consequences are derived:

CONSEQUENCE 1. P{A} + p{A} = 1.
Proof: A and A are nonoverlapping sets.

{A or A} = %
(Le., all possible outcomes are in A or in A)

P{A} + P{A} = P{%}
P{A} + P{A} = 1

CONSEQUENCE 2. P{A} ~ 1.
Proof: By Axiom 1, P{.1} :2: 0 and hence by Consequence 1,

P{A} ~ 1.
CONSEQUENCE 3. P{ep} = O.
Proof: Since ep= %, P{ep} = 1 - P{%} = 1 - 1 = O.
CONSEQUENCE 4. If B is a subset of A, P{B} ~ P{A}.
Proof: Suppose B is a subset of A. Then let C be the set of

points in A which are not in B. Then A = {B or C} where B
and Care nonoverlapping sets. Hence, by Axiom 3,

P{B} + P{C} = P{A}.

But by Axiom 1, P{C} :2: O. Hence P{B} ~ P{A}.
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CONSEQUENCE5. P{AI or A, or •.. } :::;;prAll + P{A2} + ....
Proof: Let BI = All B. equal the set of possible outcomes in A2

which are not in All Ba equal the set of possible outcomes in Aa
which are in neither Al nor A2, etc. The set BI is a subset of Al
(in a rather trivial way since BI = AI), B2 is a subset of A2, Ba is a
subset of Aa, etc. The sets BH B., Ba ••• are nonoverlapping. Any
outcome which is in at least one of the A's is in one of the B's and
vice versa. Thus,

{AI or A2 or ••• } = {BI or B2 or ..• }
P{AI or A2 or .•. } = P{BI or B2 or .•. }

= P{BI} + P{B,} + ...
by Axiom 3.

P{AI or A2 or ..• } :::;;P{AI} + P{A.} + ...
by Consequence 4.



APPENDIX E.

Properties of Expectation

Ordinarily, the expectation of a random variable X is defined in
terms of the probability distribution for the experiment. For
simple cases where the experiment has only a finite number of
possible outcomes, this definition is quite simple and essentially
the one implied in the discussion of Example 4.2. For more com-
plicated examples, this definition has a relatively sophisticated
form from a mathematical point of view.
Instead of presenting the definition of expectation, we shall list

its basic properties as axioms and derive consequences of these.
Axiom 1. E(X + Y) = E(X) + E(Y).
Axiom 2. E(cX) = cE(X).
Axiom 3. E(X) > E(Y) if X> Y.
Axiom 4. E(X) = p if X takes the values 1 and 0 with proba-

bilities p and 1- p respectively.

CONSEQUENCE 1. E(c) = c.
Proof: Let X = 1 for all possible outcomes. By Axiom 4, E(X)

= 1 and
E(cX) = E(c) = c by Axiom 2.

CONSEQUENCE 2. E(aX + bY) = aE(X) + bE(Y).
Proof: E(aX + bY) = E(aX) + E(bY) by Axiom 1.

= a E(X) + b E(Y) by Axiom 2.
CONSEQUENCE 3. E(ajXj + a,X2 + ... + anXn)

= aj E(Xj) + a. E(X2) + ... + anE(Xn).
Proof: For n = 3, we have

E(ajXj + a,X. + a3X3)= E(ajXj + a.X2) + E(asX3) by Axiom 1.
= aj E(Xj) + a. E(X.) + as E(X3)

by Axiom 2 and Consequence 2.

By a similar argument we can extend this result for arbitrary n.
In fact this result can, under mild conditions, be extended to the
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case where there are infinitely many Xl' However, technical dif-
ficulties sometimes arise. It pays to point out now that E(X) is not
always defined. For example, it could be that X = Xl + X. + X3

+ ... where E(Xj) = E(X3) = E(Xo) = ... = 1 and E(X2) = E(X4)

= E(x,,) = .•. = -1. In this case,

E(Xj) + E(X.) + E(X3) + ... = 1 - 1 + 1 - 1 + 1 - 1 + ...
has no special meaning since the partial sums 1, 1 - 1, 1 - 1 + 1,
1 - 1 + 1 - 1,1 - 1 + 1 - 1 + 1, ... fluctuate between 1 and 0,
and do not approach some single number. The standard mathe-
matical definition for expectation does not apply to this random
variable X. Consequently, in stating Axioms 1, 2, and 3, one ought
to add the condition that E(X) and E(Y) have meaning.
CONSEQUENCE 4. If X is the discrete ramdom variable which as-

sumes the values XH x•.•• with probabilities PI' P••••• , then

E(X) = PIXI + P.X. + P3X3 + ...
or

Proof: Let YI = 1
Y. = 1
Y3 = 1

Then

if X = Xl and 0 otherwise;
if X = x. and 0 otherwise;
if X = X3 and 0 otherwise, etc.

and
E(X) = Xj E(Yj) + X. E(Y.) + X3 (Y3) + ....

But by Axiom 4, E(YI) = PH E(Y2) = P••.•• , and thus:

E(X) = PlXl + P.X. + ....
CONSEQUENCE 5. Suppose Y = h(X), where X is a discrete ran-

dom variable which assumes the values Xl' X ••••• with probabilities
PH P.. ••.. Then

E(Y) = E[h(X)] = L. PI h(xJ.
t

Proof:

where Y! is defined as in the proof of Consequence 4. Then by
Consequence 3,
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E(Y) = 2: h(x1) E(YI) = 2: PI h(xl).

As an example, we have E(X') = PIX~+ P.x~ + ....
CONSEQUENCE 6. [fX ~ Y, E(X) ~ E(Y).
Proof: If X ~ Y then X > Y - 0.001, and

E(X) > E(Y - 0.001) = E(Y) - 0.001
by Axiom 3 and Consequence 2.

Similarly, E(X) exceeds each number smaller than E(Y). But
this is possible only if E(X) > E(Y) or E(X) = E(Y). In other
words, E(X) ~ E(Y).
Although Consequence 4 gives us the rule for computing the

expectation of a discrete random variable, it does not apply for a
continuous one. We present here a brief outline of the principle
applied to general random variables. As the reader may recall, in
Chapter 3, we briefly indicated how to approximate a continuous
random variable by a discrete one by using a rounding-off process.
Here we shall let X* be X rounded off to the second position after
the decimal point, compute E(X*), and show that it is close to E(X).
The rounded-off value of X is given by

X* =-.i-
10'

if i - 1/2 < X < i + 1/2
10' - 10'

i = ... -2, -1,0,1,2, •••.

Densityf of X
25 Probabilitiesfor X *

-0.04

20
y
15

pi X*= 0.06) =P6

0.10

Figure E.-I. Construction of an approximating discrete distribution
for a continuous distribution with density f.

(Thus if X = 0.02435916 .•• , X* = 0.02.) Then (see Figure E.-I)

P{X* =-.i-} = P { i - 1/2 < X < i + 1/2 } =10' 10' - 10' PI
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X* - 1/200 :::;;X :::;;X* + 1/200.
By Consequence 4,

E(X*) = 2::...i.- p{X* =..i.-} = 2::. (..i.-) Pl'
t 102 10'! 102

By Consequence 6,

E(X* - 1/200) :::;;E(X) :::;;E(X* + 1/200).
By Axiom 1,

E(X*) - 1/200 :::;;E(X) :::;;E(X*) + 1/200.
Thus

E(X) is within 1/200of E(X*) = 2::...i.- Pl'
! 102

In this way, E(X) has been approximated within 0.005. By the
same technique, E(X) can be arbitrarily well approximated and
evaluated as the limit of its approximations. Although this is the
principle of evaluating E(X), its application is sometimes difficult.
However, it has a geometric interpretation if X has a continuous
distribution. Draw the graph of g given by g(x) = xf(x), wheref
is the density of X, see Figure Ec2. The area between this curve

0.8

0.6
y

0.4

-0.04 -0.02

0.2

o 0.02 0.04x 0.06 0.08 0.10

Figure Er2. Graphical representation of E(X).

and the horizontal axis is made of little pieces, with areas approxi-
mately (i/l02)p!. But then the sum of these pieces is approximate-
ly E(X*). Thus E(X) is the area between the curve given by y =
xf(x) and the horizontal axis. (For negative x, g(x) is negative
and the corresponding area below the axis is subtracted from the
part where x is positive.)

------".--_ ..-.-- -- .._-~--~_._-
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Similarly one can argue that E(X') is the area between the curve

given by y = x'f(x) and the lwrizontal axis.
Some other results of importance are the following. If we define

Px = E(X) and <Ti = E[(X - Px)'] and <Tx= positive square root
of <Ti, we have
CONSEQUENCE 7. E(X - Px) = O.
Proof: E(X - Px) = E(X) - Px = Px - Px = O.
CONSEQUENCE 8. <Ti = E(X') - pi.
Proof: (X - Px)' = X2 - 2pxX + pi

<Ti = E[(X - PX)2] = E(X') - 2px E(X) + pi
<Ti = E(X') - 2pi + pi = E(X') - p~.

CONSEQUENCE 9. If Y = a + bX, and b is positive
py = a + bpx, <T~= b'<T~, <Ty= b<Tx.

Proof: py = E(a + bX) = a + b E(X) = a + bpx
<T~= E[(Y - py)'] = E {[(a + bX) - (a + bpX)]2}
= E{[b(X - Px)]'} = b' E[(X - PX)2] = b'<T~

<Ty= b<Tx.
CONSEQUENCE 10. If Y = (X - PX)/<TX, then py = 0 and <Ty= 1.

Proof: py = E(X - px) = .l- E(X - Px) = 0
<Tx <Tx

<T~= E[ (X ~/x)'J= <Tl~E[(X - Px)']

= <T~ = 1.
<T~

CONSEQUENCE 11. The value of a which minimizes E[(X - a)']
is a = Px.
Proof: X - a = (X - Px) + (Px - a)

(X - a)' = (X - Px)' + 2(px - a)(X - Px) + (Px - a)'
E[(X - a)'] = E[(X - Px)'] + 2(px - a) E(X - Px)

+ (Px - a)'
E[(X - a)'] = <Tx'+ 0 + (Px - a)'.

Thus E[(X - a)'] is at least equal to <Tk, and is equal to <T~only
when Px - a = O. Thus a = Px minimizes this expression.
CONSEQUENCE 12. The value of a which minimizes EO X - a l)

is a = "x = median of X.I
1 The median of X is a number vx such that PiX < vx} ,,;;:0.5";;: P{X";;: vx}'

Sometimes Vx is not uniquely determined.
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Proof: Suppose a = ).Ix+ c > ).Ix. Then

IX - a I - IX - ).Ix I = c
-c :::;;IX - a I - IX - ).Ix I :::;;c

IX - a I - IX - ).Ix I = - c
Let

Y=c
Y =-c

Then

if X:::;;).IX
if ).Ix< X < ).Ix+ c
if X ~).IX + c.

if X:::;;).Ix
if X> ).Ix.

IX-al-IX-).Ixl~Y
and

E(Y) = cP{Y = c} - cP{Y = -c} = cP{X :::;;).Ix} - cP{X > ).Ix}

and
E(Y) ~ 0

since
P{X :::;;).Ix} ~ 0.5.

But then
E( IX - a I) - E( IX - ).Ix I) ~ E(Y) ~ 0

and thus E(I X - a I) is at least equal to E(I X -).Ix I). A similar
argument applies for a < ).Ix. With a slight refinement, the above
argument yields the fact that, if a is not a candidate for the
median, E(l X - a I) actually exceeds E(I X - ).Ix I).
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The Convex Set Generated by A is the Set
of W eighted Averages of Elements of A

1. First we prove that the set S of weighted averages of ele-
ments of A is convex. Suppose u and u* are weighted averages
of some points of A. Then we can write

u = W1V1 + w,v2 + + w"v"
u* = W~Vl + w:v. + + w:v"

where the VI are points of A and WI ~ 0, t.WI = 1, wI* ~ 0, and
1-1

"L. wt* = 1. Now we must show that
I-I

u** = (1 - w)u + wu*
is a point of S (Le., a weighted average of points of A) if 0 ~ W

~ 1. But
u** = [(1 - w)w1 + wwnv1 + [(1 - w)w2 + wwiJv. + ...

+ [(1 - w)w" + ww:JV".
u** = wi*v1 + w:*v2 + ... + w:*v".

Now u** is a weighted average of VI! V., ... provided only that
wI** ~ 0 and '£ wi* = 1. But since wi* is a weighted average

1-1
of the two non-negative numbers WI and wi, wi* is non-negative.
Furthermore

n n n n

L. wi* = L. [(1 - w)wI + wwiJ = (1 - w) L. WI + w L. wi
1=1 1-1 1=1 1-1

= (1 - w) • 1+ w • 1 = 1.

We have shown that any weighted average of two points, ii and
ii*, of S is itself a point of S and that therefore S is convex.
2. Next we prove that, if T is a convex set such that A is a

subset of T, then S is a subset of T (Le., any convex set contain-
ing A contains S). To do so, it suffices to show that an arbitrary
weighted average of points of A,

321



322 ELEMENT ARY DECISION THEORY

is in T. There is no loss of generality in assuming WI > O. First
we note that VIP V., ••• , V" are in A and hence in T. Next,

U. = WI VI + W. V,
WI + W. WI + W.

is on the line segment connecting VI and v, and, hence, is in the
convex set T. Next

- _ WI +_w_, - + w_3__ -~- ~ ~
WI + W. + W3 WI + W. + W3

= WI VI + W, V. + W3 V3~+~+~ ~+~+~ ~+~+~
is on the line segment connecting U. and v3 and, hence, in T.
Continuing in this fashion, we have

-u - WI + W. + ... + W"-I- + W" -"- ---------un-1 --------v"
WI + W, + ... + W" WI + W, + ... + W"

= WI VI + W, V, + ...
WI + W. + ... + W" WI + W. + ... + W"

+ W" V"
WI + W. + ... + W"

= WIVI + W.V, + ... + w"V" = 'it

is on the line segment connecting U"_I which is in T and v" and,
hence, is in T. Since any convex set containing A contains S, and
S is convex, it follows that S is the smallest convex set containing
A. That is, S is the convex set generated by A.
The reader may note that the above argument incidentally

proves that there actually is a smallest convex set containing A. A
simpler proof of this fact involves showing that the common part
of all convex sets containing A is a convex set which contains A.
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Relevance of Risks

Consider a problem where the expected losses are given by
L(OH s) and L(02' s). Suppose you decide that you prefer some
strategy so' Now let the problem be changed as follows. Mr.
Breakwell tells you that he will toss a well-balanced coin. If it
falls heads, he will see to it that you end up with k1 or k, depend-
ing on whether 01 or 0, is the state of nature. If it falls tails, he
will leave you to your own devices and you can proceed as before.
Presumably if the coin falls tails, you should be satisfied to apply
So'

However, the entry of Mr. Breakwell into the problem makes
for some new expected losses. In this case, the expected losses
corresponding to the use of s if the coin falls tails are

L*(OH s) = (1/2)k1 + (1/2)L(OH s)
and

L*(O" s) = (1/2)k, + (1/2)L(O" s).

First let k) = k, = O. (Mr. Breakwell is very kind.) Then we
should still be satisfied to apply SO' Thus, multiplying the expected
losses by ~ does not affect the nature of a good strategy. But if
we interchange the Land L*, it also follows that multiplying by 2
does not affect the nature of a good strategy. However, it is clear
that by using a suitably biased coin we could prove that multiply-
ing the L(O, s) by any fixed positive number does not affect the
nature of a good strategy.
Now let us return to the case where k1 and k, are not necesarily

zero. Multiply L* by 2 and we obtain

L**(OH 8) = k1 + L(OH 8)

L**(O" s) = k, + L(O,. s).

Thus a problem with expected losses given by L** should yield the
same " good" strategies as the original problem. But this means
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that we can.add an arbitrary constant to each row in the expected
loss table without affecting what constitutes a good strategy. Geo-
metrically this means we can shift S horizontally or vertically
without affecting our choice. In particular, we can let ~ and k.be
the negative of the minimum losses under states (}l and ().(i.e.,
shift S until it touches both axes). But this way L** coincides
with the risk R. Thus, an analysis of R should provide the "good"
strategy.
For this reason, some statisticians often feel free to confine their

attention to regrets and risks, and often do not bother computing
with losses. Of course, this argument also applies if there are
k> 2 states of nature.



Probabilities of Compound Sets

In the appendix we prove certain propositions stated in Section
2 of Chapter 6.
CONSEQUENCE1. .
PiA and Band C}= PiA} P{B IA} PiC IA and B}.

Proof: PiA and B} = PiA} P{B IA}
PiA and Band C} = P{(A and B) and C}

= PiA and B} PiC IA and B}
= PiA} P{B IA} PiC IA and B}.

This argument extends easily t~ yield
CONSEQUENCEla. P{AI and A. and ••• and An}

=P{AI} P{A.I AI} P{Aal Al and A.} •••
PiAn IAI and A. and ••• and An-I}.

I

CONSEQUENCE2. PiA or B} = riA} + P{B} - PiA and B}.
Proof: {A or B} = {EI or E.orEa}

where Ell E••Ea are the nonoverlapping sets:

EI = {A and B}
E. = {Band A}
Ea = {A and B}.

Thus

PiA or B} = P{EI} + P{E.h+ P{Ea}
= {P{EI} + P{Ea}) + (P{E.} + P{Ea}) - P{Ea}.

But

and thus

Similarly,
P{B} = P{E.} 0+ P{Ea}
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P{A or B} = P{A} + P{B} - P{A and B}.

This result can be extended. We give the extension, without
proof, for three sets.
CONSEQUENCE 2a. P{A or B or C}

= P{A} + P{B} + P{C} - P{A and B} - P{B and C}
- P{A and C} + P{A and Band C}.



APPENDIX Es

Bayes Strategies Obiained by Using
!

A Posteriori Probabilities'

For the discrete case we shall p~ove that the Bayes strategies
are equivalent to Mr. Solomon's 6f computing a posteriori proba-
bilities on the basis of the data Z; and solving the corresponding
no-data problem. We have "

W - wJ(Z I (JI)
1- f(Z)

f(Z) = w,f(Z I (J,) + w.f(Z I (J.) + ... + wd(Z I (Jk)
_ k 1 k

B(w, a) = ~ WI r«(JI, a) = - ~ wJ(Z I (JI) r«(JI, a).1-, f(Z) 1-,
Mr. Solomon's strategy is to react to Z with the action which
minimizes

B(w, a) or

The Bayes strategy as originalIy described is the strategy s .
which minimizes the average expected loss

k'

.9i?(w, s) = ~ WI R«(JII s).
f=l,

If Z can take on values z" z., .. " we have

R«(J, s) =f(z,I(J)r«(J, s(z,)) +f(z.I(J)r«(J, s(z.)) + ...
= ~f(zj I(J) 'r«(J, s(Zj))
j

.9i?(w, s) = w,f(z, I(J,) r«(J" s(z,)) + w,f(z21 (J,) r«(J" s(~)) + .,.
+ w.f(z, I(J.) r«(J., s(z,)) + w2f(z.1 (J.) r«(J., s(z.)) + .
+ waf(z,l(Js) r«(Js, s(z,) + wsf(z2I (Js)r«(Js, s(z.)) + .

, This appendix proves a remark made: in Sections 1 and 4 of Chapter 6.
327
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The expression s(Zj) appears only in the first column. Thus to
minimize ytl(w, S), we should select s(Zj) to minimize

wd(zj 1°1) r(O), s(z]» + w.f(zll 0.) r(02' S(ZI»
+ ws/(zjIOg) r(Og, S(ZI» + ....

This defines the Bayes strategy reaction to the possible observa-
tion Zj; similarly, if z. is observed, s(z.) should be that action which
minimizes

wd(z.1 01) r(O), s(z.» + w.f(z.IO.) r(02' s(z.» + ....
In general, if an observation Z is recorded, the Bayes strategy

should give for s(Z) that action which minimizes
k

L. wJ(Z 10,) r(0lo a).'-I
But this is exactly the same as the rule advocated by Mr.
Solomon.
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Crossing Bridges One at a Time 1

We shall prove that the a posteriori probability w derived from
the data (X, Y) together is the same as w** which is derived serially
by considering the data X and Y one after the other. For simpli-
city, we assume that X and Yare discrete and independent for
fixed {}and give a proof for that case only.

f(x, yl{}) = P{X =x and Y = YI{}}
g(xl{}) = P{X = xlO}
h(yIO) = P{Y = ylO}

f(x, y I0) = g(x I0) k(y I0)
f(x, y) = L. wJ(x, ylOi)

g(x) = L. Wi g(xIOi).
i

The a posteriori probabilities Wi are given by
,

_ wJ(X, YIOi)
Wi - j(X, Y) .

On the other hand, the a posteriori probability derived from X
alone is given by

Finally,

wt* = wt h(Y I(};) ,
k

L.wt h(Y I0i)'
;=1

1 This appendix refers toa statement in Section 4, Chapter 6.
329
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Mean and Variance of X

We have already given some properties of expectation. Now we
can apply them to the sample mean. First of all, suppose that Xl'
X., ... , Xn are n random variables. Then,

Thus, if Xh X., ... , Xn all have the same probability distribution
which has mean flx

E(X) = flx + flx + ... + flx = flx.
n

To treat the variance of X, we use a property of expectation not
previously considered. This is basic enough to warrant addition to
the list of the four properties in Section 3, Chapter 4.

Expectation Property 5. If X and Yare independent random
variables, then

E(XY) = E(X) E(Y).

For discrete random variables, one may easily demonstrate this
property. As a special case, suppose that X assumes the values
Xu x. with probabilities j(x1) and f(x.) while Y assumes the values
YI1 Y•• and Y3with probabilities g(Yl)' g(y.), and g(Y3). Then XY can
be X]Yh X1Y•• XJY3, X.YI, X.Y., or X'Y3. SinceX and Yare independent,
these outcomes have probabilities f(x]) g(Yl), f(xJ) g(y.), etc.

E(XY) = xIYd(xl) g(Yl) + x]y.J(xJ) g(y.) + XJY3{(Xl) g(Y3)
+ x.Yd(x.) g(y]) + x,y.J(x,) g(y,) + x,y.j(x,) g(Y3)

= [xd(x1)][Yl g(Yl) + Y. g(y.) + Y3g(Y3)]
+ [x,f(x')][YJ g(y]) + Y. g(y.) + Y3g(Y3)]

= [xd(xl) + x.J(X')][Yl g(yJ + Y. g(y.) + Y3g(Y3)]
= E(X)E(Y).
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Note that, if X and Yare indepen?ent and h, and h, are two func-
tions, then h,(X) and h,(Y) are independent. Now let us compute
a-~+y when X and Y are independJ~nt. First

(ElO-3) flx+y ~p~!+ fly

whether or not X and Y are independent.
jl

(X + Y - flx+y)'= [(X - Px) +,I(y - fly»)"
= (X - fli)' +!i,2(X - flx)(Y - fly) + (Y - fly)'

a-~+y = E[(X +Y ~ flx+y)"]
= E[(X -;flx)'j + 2E[(X - flx)(Y - fly)]
+ E[(Y- flf)"]

E[(X - flx)"] =a-~ :r
E[(X - flx)(Y - fly)] = E(XY - Xfly - flx Y + flxflY)

" II
= flxflYI - flxflY - flxflY + flxflY = 0

E[(Y - fly)'] = a-}. I

Thus

(ElO-4) a-~+y = a-~;+ a-},

if X and Yare independent. Applhng ,this result to n independent
• 'IobservatIOns on X, we have ,;

(ElO-5)

and

t!

a-~ +x +.•• +x = a-~ + a-~ + ... + a-k = na-k
1 2 n 1 :j2 n

<J

;
:w- '11

!_2 ~...:..1, _na-~a-x - a- (X +x +•.. +x )/n - """"77a- X +x +•.• +x ---
I ~ n n'l. 1 2 n n2

I
112

(ElO-6) a-~= a-x .
.' n
~~ .'1

.,1
The reader should note that the: argument which leads to Equa-

tion (ElO-4) can be applied as ,well:jto X - Y as to X + Y, which
gives the result, for X and Ykindependent, .

i
(E,o-7) a-~_y = a-kl+ a-y.

0'
i~
'i
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For Testing a Simple Hypothesis Versus
a Simple Alternative, the Bayes Strategies
Are Likelihood-Ratio Tests

Consider the problem of testing a simple hypothesis HI: 0 = 01
versus the simple alternative H2: 0 = O2, Supposethat the a priori
probabilities WI = 1 - wand W2 = ware given for 01 and O2, First
we shall solve the no-data problem. Here there are only two
strategies: take action al or take action a2• The risks associated
with these are

w

/
/
/

~ B(W, aI'
"'"

..•.... /
B(W,a2' ~ /

/ .........

/ ""... I ........,
.•.•..

/ .'i'~W) ........,

/ I
.......•••

..........•.

3

00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
'----v----/\ y I

4

5

w =a priori probability of 82

Figure Ell-I. Bayes risk for the no. data problem.
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and
B(w, a.) = (1 - w) r(Ol) + w • 0 = (1 - w) r(Ol)

and the Bayes risk for the no-data problem is then

@(w) = min [w r(O.), (1 - w) r(Ol)]

and is represented in Figure En-1 for Example 9.1. The two risks
are equal where the two lines B(w, al) and B(w, a.) intersect, i.e.,
for w = Wo where

Wo 1'(0.) = (1 - wo) r(Ol)

Wo = r(OJ)
r(Ol) + r(O.)

Thus, the solution to the no-data problem is to take action al if
w < wo, a~if w > wo, and either action if w = woo
Now we consider the problem with data. Here the data trans-

form the a priori probability w to wand the Bayes strategy leads
to al if w < wo, a. if w > wo, and either action if w = woo But from
Equation (6.7) we know that

w = w = wj(ZIO.)
• (1 - w)j(ZIOl) + wj(Z I0.)

1=
{[(1 - w)j(ZIOl)]/[wj(ZIO.)]} + 1

_ 1
- {[(1 - w)/w][J(Z)]} + l'

As A(Z) increases, w decreases. Furthermore, w = Wo when

1 = r(Ol) = 1
{[(1 - w)/w][J(Z)]} + 1 r(Ol) + r(O.) 1+ ([r(02)]/[r(Ol)]}

or
A(Z) = w r(O.) = k.

(1 - w)r(Ol)
Thus,

if A(Z) > k, w < wo, and our Bayes strategy calls for al;
if A(Z) < k, w > wo, and our Bayes strategy calls for a.;
if A(Z) = k, w = wo, and our Bayes strategy calls for

either al or a•.
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This means that the Bayes strategy is the likelihood-ratio test
for

k = wr(02)
(1 - w) r(Ol)
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Some Likelihood-Ratio Tests

We present the likelihood-ratio tests for three examples.
Example EI2-1. Binomial Distribution. Test the hypothesis

HI: P = PI versus H2: P = P2where PI > P2' P represents the proba-
bility of a head, and the experiment consists of n tosses of the coin.
The probability of observing HHTHHTT ••• is pp(l - p) pp(l -

P )(1 - p) •• '. Thus if the data Z consist of a sequence of n tosses
of which m are heads,

j(Zlp) = pm(l _ p)n-m

_p_l"(_l p_I)_n-_m __ ( 1 - PI)n( PI/(l - PI) )m,l(Z) = -
pr(l - p2)n-m 1- P2 P2/(1 - P2) .

The expression

~=_1 __ 1
1- PI 1- PI

increases as PI increases. Since PI > P2, it follows that

PI/(l - PI) > 1
P2/(1 - P2)

and, thus, ,l(Z)increases as m increases. Then ,l(Z) will increase
when p=m/n increases, and the likelihood-ratio test which consists
of accepting HI if ,l(Z)is larger than some constant is equivalent
to accepting HI if P is larger than some related constant.
Example E12-2. Normal Distribution, Known (T. Test the

hypothesis HI: P = PI versus H.: P = P2where PI> P2' and the data
Z consist of n independent observations XII X2, ••• , Xn which are
normally distributed with mean P and known standard deviation (]".
In this problem

j(Zlp) = [, / 1 exp ( (XI - P)')J[ 1 exp (_(X. - P)2)J
V 21l"(]"' 2(]"2 vi21l"(]"2 2(]"2
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Then
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... [ 1 exp (_ (Xn - P )2)J
V21l'<T2 2<T2

= (21l'<T2)-n/2 exp [_.l-(t. (XI - p)2)J.
2<T2 1=1

Since exp (-x) decreases when x increases, the likelihood-ratio test
consists of accepting HI if

2: (XI - Pl)2 - 2: (XI - p.)2 = - 2n (PI - P.)X + n(p~ - pD
is small. But 2n(Pl - P.) is positive, and this expression is small
when X is large. Thus the likelihood-ratio test consists of accept-
ing HI if X exceeds some constant.
Example E12-3. A Peculiar Example Involving the Cauchy

Distribution. Suppose that the data consist of a single observation
X with density given by

1
f(x I0) = 1l'[1 + (x _ 0)2]

""-
This density is symmetric and centered about 0 and resembles the
normal density. Test HI: 0 = (}l ~ 1 versus H2: 0 = O2 = -1.
The likelihood-ratio is

J(X) = 1 + (X + 1)2 = X2+ 2X + 2 .
1 + (X - 1)2 X2 - 2X + 2

To show the peculiarity of the likelihood-ratio tests for this
example, let us illustrate with the test which accepts HI if J(X)> 1/2.
Thus we accept HI if

2X2 + 4X + 4 :2: X2 - 2X + 2
or

X2+ 6X + 2 :2: O.
But

X2 + 6X + 2 = 0
X2 + 6X + 2 > 0

and

when X = - 3 :l:v7
when X < -5.65 or X > -0.35

~- - ~-- -- -.-, -- ._-~----
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X2 + 6X + 2 < 0 when '--5.65< X < -0.35.
Thus for k = 1/2, we accept HI when X is large enough (> - 0.35),
or very small (highly negative, i.e., < -5.65).
It should be remarked that, although an intuitively appealing

strategy, such as, "accept HI if X > - 0.35," is not admissible, it
is almost so, and its error point l~esclose to the error curve.
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Admissibility of the Two-State Likelihood-
Ratio Tests for Certain Problems
Involving Composite Hypotheses

In this appendix we shall prove that, for the binomial problem
of testing HI: P ~ Po versus H2: P < Po, the admissible tests are
the same as for the two-state problem. That is, accept HI if P is
large enough. More specifically let Y be the class of tests which
can be described as follows:

Take action al if p > c
Take action a~ if p < c
Take either action if p = c.

We know that Y is the class of admissible tests for testing Hi:
P = PI versus H:: P = P~ (PI> P2). We shall prove that Y is the
class of admissible tests for HI versus H2• The proof follows in two
parts.
1. Every Teat in Y is Admissible. Let 8 be a dominated test of

HI versus H2• Then there is a test 81 which dominates 8 and for
which R(p, 81) ~ R(p, 8) for all P and R(p, 81) < R(p, 8) for some P,
say Ps. To be specific, let us suppose Ps > Po. Select an arbitrary
P, ~ Po. Then 81 dominates 8 for the two-state problem of testing
Hi*: P = Ps versus H:*: P = p,. But no strategy which is domi-
nated for the two-state problem can be in Y. Hence 8 is not in Y
and every test in Y is admissible.
2. Every Admi8sible Test is in Y. Suppose that 8 is not in Y.

For this test, a,(po, al) is some number. By suitably adjusting c,
we find a test 8, in Y which has the same action probabilities for
Po, i.e.,

a,.(po, al) = a,(po, al).

We shall now show that 8. dominates 8. Suppose P6 < Po. Since 8. is
338
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admissible and 8 is not for testing P = Po versus P = P5' and the
action probabilities coincide at' Po, it follows that as.(P5' a1) <
as(P5, a1). Thus R(P5' 82) < R(P5' 8) unless r(P5) = 0, in which case
equality replaces inequality. Similarly, if Po > Po, we consider
testing P = Po versus P = Po and obtain as.(po, a2) < as(po, a.),
giving R(po, 8.) < R(po, 8) unless r(po) = O. Thus we have

for all pR(p, 8.) :::;;R(p, 8)
!and ~j

R(p, 8.) < R(p, 8)

for some p provided that the ptoblem is nontrivial and r(p) > 0
for some p other than Po' Thus ~ny test 8 not in J is dominated
and, consequently, every admissible test is in ..:T.
Combining (1) and (2), it follows that J is the class of admis-

sible tests.
This argument applies also to the normal distribution problem

with known (T. The main condition which allows for the gener-
alization of this result is that th~ class J of likelihood-ratio tests
for 8 = 81 versus 8 = 8. (8• .< 81) does not involve the particular,
values of 81 and 8•.
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Sequential Likelihood-Ratio Tests

0.8 0.9 1.0 w

Take a~tion az
0.70.3 0.4 0.5 0.6

Take an observation

$(iii) --

$*(w) ---

$**(w) ---

$7 ~

l(: $**"'"
--- --- --. ~1

tt ----1 ..•.
~----~/' -- $* "•......---

/ ---~
~

4

o
o 0.1 0.2'- /\

Take action al

Here we shall show that, when the cost of taking N observations
is C(N) = eN, the Bayes sequential tests of a simple hypothesis
versus a simple alternative are the sequential likelihood-ratio tests.
First modify the problem so that the first observation is free

and we can proceed optimally thereafter. The minimum average
risk is given by some function ~*(w) which is no greater than

5

Figure E1rl. ~ (iV), the Bayes risk for the no-data problem;
~*(iV), the minimum average risk for the sequential problem with
the first observation free; and ~ **(iV), the minimum average risk for
the sequential problem with the first observation costing 0 whether it

is used or not.
340
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the Bayes risk for the no-data problem, @(w). (See Figure E14-l.)
Let us assume for the time being that ~*(w) is concave (all chords
lie below the curve). Now suppose that we were forced to take
the first observation and to pay for it, and then were allowed to
proceed optimally. The minimum average risk would be cq**(w)
= c + @*(w).
Now let us consider the original problem where we can choose

whether to take the first observation (at a cost of c). If w is such
that @(w) < @**(w), it pays to take no observation but to take
the appropriate action depending on the location of w. If @ (w)
> @**(w), it pays to take an observation.
It may occur that the cost of observation c is so large that @ (w)

< ~ **(w) for all w. If this is the case, all Bayes strategies pro-
hibit taking observations. Often this is not the case. Then we
note that each flat section of @(w) will intersect ~**(w) at one
point, altogether giving two points with abscissas VI and V2• Then
the Bayes strategies dictate: take action Ut if 0 :-:;;w :-:;;VI> take
an observation if VI < w < V., and take action a. if v. :-:;;w :-:;;l.
Suppose that the problem is such that each observation taken

costs c, and all successive observations are independently distribut-
ed with a common distribution depending only on (). Suppose that
VI < w < V. so that a first observation is taken. Digest it by com-
puting w"', the a posteriori probability of ().. The problem now
facing us is exactly the same as the one we had before except that
w is replaced by w"'. Hence, we should stop sampling unless VI <
w'" < V ••

In other words, in this problem where each observation costs c,
and the observations are independent with the same distribution,
each Bayes solution can be characterized by two numbers VI and v•.
If, after any observation, the a posteriori probability w is such that:
(a) 0:-:;; w :-:;;VI> take action al
(b) VI < w < V.. take another observation
(c) v.:-:;;w :-:;;1, take action a2•1

The problem of finding the two numbers VI and v. corresponding
to r«(}I)' r«(}.), and c is not a trivial one, but it has been treated
successfully"
1 We have implicitly ignored some Bayes strategies. A Bayes strategy could

call for another observation if w = VI or V•.
2 Incidentally, VI and v. are determined by f(x 18) and the ratios of the three

costs, r( 81), r( 8.), and c.
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What does this procedure have to do with the likelihood-ratio
procedure? To answer this question, let us compute w" after the
data Z"= (XH X2, ••• , X,,)have been taken. Referring to Appendix
En we see that

w = 1
" {[(I - w)/w][,l,,(Z,,)]} + l'

An increase in the likelihood-ratio increases the denominator and
decreases the above fraction. In fact

,l,,(Z,,)= 1- w,,~.
w" 1-w

Thus w" :::;;VI if and only if ,l,,(Z,,)~kl = [(1 - VI)/VI][w/(l - w)].
Hence we take action al if ,l,,(Z,,)~ kl = [(1 - VI)/V1][w/(1 - w)].
Also, we take action a. if ,l,,(Z,,):::;;k. = [(1 - v2)/v.][w/(1 - w)],
and we take another observation if k.< ,l,,(Z,,)< kl• Note that,
while VI and v. did not involve the original a priori probability w,
the limits on the likelihood-ratio, kl and k •• do involve w, although
in a rather simple fashion. In any case, kl and k2 depend on rH r2,
c and w.
It remains to show that ,q; *(w) is represented by a concave

curve. The argument we shall give for ,q; *(w) is quite general
and may be used to show the concavity of the Bayes risk for any
decision problem.
For each strategy 8, the risk ~(8) = (1- W)R(OH 8)+ WR(02' 8).

In our present graphical representation, 8 is represented by a
straight line segment from (0, R(OI' 8» to (1, R(02' 8». The curve
giving ,q; *(w) is the lower boundary of a set of line segments
corresponding to the strategies being considered. Since each line
segment is on or above the curve at w = WI and at w = w., each
line must be on or above the chord connecting the points at W=WH

and w = w.. Hence the lower boundary of the line segments must
lie on or above the chord. Thus the lower boundary is concave.
These results can be extended to an arbitrary finite number of

states of nature and finite number of available actions. In fact,
another point of view leads to a shorter proof. Suppose that the
states of nature are 0H 0••••• , Ok and the available actions are aH
a••••• , am. The preceding argument for the concavity of ,q; *(w)
applies equally well to show that ,q; ***(w), the weighted average
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of risks for the optimal Bayes strategy, is concave. Let 8j be the
jth stopping set, i.e., the set of W for which taking action aj with
no observation is a Bayes strategy. We shall prove that the stop-
ping sets are convex.
Suppose Wei) = (Wn, W12, ••• , WIk) and W(2) = (W211 WZ2I ••• , WZk)

are in 8j and W(3) = (1 - a)w(l) + aw(z), 0 ~ a ~ 1. Then
k

~ ***(W(l) = L. WlI r(Oi' aj),
i-I

k

~ ***(w(z) = L. WZi r(O!, aj),
i=l

and, by concavity, the best that can be done, if w = W(3), is

@ ***(W(3) ~ (1 - a) G.W ***(w(l) + a @***(w(z).

But if W = W(3) and action aj is taken with no observation, the
risk is

k k
L. W3! r(O!, aj) = L. [(1 - a) WlI + a WZ!] r(OIl aj)
i-I 1-1

= (1 - a) ~ ***(W(l) + a ~ ***(w(z),

which is the best that can be done. Thus W(3) is in 8j, and 8j is
convex.
In the special two-action, two-state case, it is clear that the

stopping set for a1 is a convex set containing w = (1,0), i.e., 81 =
{w: 0 ~ W ~ VI}' Similarly 82 = {w: Vz ~ w~ 1}. For three-action,
two-state problems, we may have three intervals which are stop-
ping sets. For three-state problems, graphical representations are
more complicated.
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Some Sequential Likelihood-Ratio Tests

We consider the sequential likelihood-ratio tests for the sequen-
tial extensions of Examples E12-1 and EI.-2.
Example EI5-1. Binomial Distribution. Here we have

~n<z,,)= (1 - Plt( PI/(l - PI) )np".
1- P. p./(l - P.)

The relation k. < ~,,(z,,)< kl is equivalent to

k.( 1- p.)n < (PI/(l - Pl) )npn < k
1

( 1- p.)n
1- PI p./(l - P.) 1- PI

log [(1 - p.)/(l - PI)] + 1 log k.
log (Pd(l - PI) ) n log (PI/(l -PI) )

p./(l - P.) p./(l - P.)

< p" < log [(1 - p.)/(l - PI)] + 1 log ki
log (PI/(l - Pi) ) n log (PI/(l - PI) )

p./(l - P.) p./(l - P.)

b.<, < +bla-- p" a -n n

where
log [(1 - p.)/(l - PI)]
log (PI/(l - PI) )

p./(l - P.)

Example EI5-2. Normal Distribution, Known (T. Here we have

The relation k. < ~,,(z,,)< kt is equivalent to

log k. < _ ....!- [2: (X! _ /11)' - 2: (X! _ /1.)'] < log kl
•

~e ~ ~e
344
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Since

2:. (Xl - PI)' - 2:. (Xl - P.)' = - 2n(pl - P.{x: - PI; P. )

and
PI - P. > 0,

the preceding inequality is equivalent to

1 ( CT' log k. ) < (x: P, + P.) < 1 ( CT' log ~ )
n (PI - P.) log e < 2 n (PI - P.) log e

i

or

where



APPENDIX F1

Remarks About Game Theory

In the study of statistics as decision making under uncertainty,
a strategy is evaluated in terms of its consequences, namely, the
average loss. This average loss depends on the statistician's
strategy and the unknown state of nature.
A closely related situation exists in game theory. We illustrate

with two very simple games. These are called two-person zero-sum
games because they involve two persons and the winning player
collects from the loser. (One player's gain is the other's loss.) The
gain of player A is called the payoff.

Example Fe1. Matching Coins. Each player selects heads or
tails. If they match at heads, player A wins $1 from player B. If
they match at tails, he wins $3. If they do not match, he loses $2
or $3 as illustrated by Table Fel. Note that each player has two
strategies available. These are" call heads" and" call tails."

TABLE Fl-l

PAYOFF (TO PLAYER A) FOR THE COIN-MATCHING GAME

Strategy of
Player B
H T min

Strategy of H 1 -3 -3
Player A T -2 3 -2

max 3
Example Fe2. There are two bags. Bag 1 has 3white and 7 red

balls. Bag 2 has 6 white and 4 red balls. Player A selects a bag
and draws a ball at random from the bag. Player B observes the
bag that player A selects and then calls white or red. If player B
guesses the color, he wins $1from A. Otherwise he loses $l.
In this example, player A has two strategies. These are "select

bag 1" and "select bag 2." But player B has more strategies
346
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available. Each of his strategies must tell him how to call for each
possible move of player A. A typical strategy would be(R, W),
which means call red if player A picks bag 1 and white if player
A picks bag 2. Suppose player A picks bag 2 and player B applies
(R, W). Then player A will obtain a white ball and lose one dollar
60% of the time and obtain a red ball and win one dollar 40% of the
time. On the average he will lose 20 cents, as shown in Table F,-2.

min

-0.4
-0.2

1
2

max

TABLE Fl-2

PAYOFF TO PLAYER A FOR EXAMPLE Fl-2

Strategy of Player B
CW, W) CW, R) CR, W) (R, R)

0.41 0.4 1-0.4 1-0.41
-0.2 0.2 -0.2 0.2

0.4 0.4 -0.2 0.2

Strategy of
Player A

We analyze Example F,-2 first. Note that if player A selects
strategy 1, the worst that can happen to him is a loss of 0.4. If
he selects strategy 2, the worst that can happen to him is a loss
of 0.2. The strategy which minimizes the worst that can happen
to him (called the minimax strategy) is strategy 2. Thus player A
can assure himself he will lose no more than 0.2.
The worst that can happen to player B for his four strategies

are 0.4,0.4, -0.2, and 0.2 respectively. His minimax strategy is
(R, W) with which he can make sure that player A will lose at
least 0.2.
Player A can assure himself of a loss of no more than 0.2 and

player B can prevent him from doing better. Then it seems reason-
able for both players to select their minimax strategies and to call
-0.2 the value of the game (to player A).
Now let us consider the coin-matching game. The minimax

strategy for player A is to select T which assures him that, at the
worst, he will lose $2. The minimax strategy for player B is to
select H. This assures him that at the worst he will lose $1. If
they both play their minimax strategies, player A will lose $2 but
player B will do considerably better than he was guaranteed.
Should player A be satisfied with this situation? The answer is
"no." For example, suppose he tossed his coin and called what-
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ever fell. This randomized strategy will yield a payoff (on the
average) of

1/2 x (1)+ 1/2 x (-2) = -1/2
if player B calls H, and of

1/2 x (-3) + 1/2 x (3)= 0

if player B calls T. Then the worst that can happen to player A
is that he will lose 50 cents on the average, which is a considerable
improvement over the previous situation.
Is there a rational strategy for the players in the coin-matching

game? There is, and this answer is based on a theorem which
applies to two-person, zero-sum games with a finite number of
non-randomized strategies. This theorem states that, if the players
are allowed to use a random device to select strategies, then, by
using the minimax randomized strategies, player A can assure
himself an amount v and player B can prevent him from doing
better. Then these minimax randomized strategies seem to be reason-
able for playing against an intelligent opponent, and v is called the
value of the game.
We illustrate with the coin-matching problem. Suppose player A

selects H with probability 5/9. Then, if player B selects H, player
A averages

5/9 x (1)+ 4/9 x (-2) = -1/3.

If player B selects T, player A averages

5/9 x (-3) + 4/9 x (3)= -1/3.

No matter what player B does, player A averages a loss of 1/3. If
A were to use a different probability, he could improve his per-
formance for one strategy of player B at the expense of hurting
it for the other, thereby incurring a larger maximum loss. Thus
the above randomized strategy is the minimax strategy for player
A. Similarly, the minimax strategy for player B consists of calling
H with probability 2/3 and T with probability 1/3. This strategy
for player B yields a payoff (to player A) nf -1/3, no matter what
he does. Thus player A can avoid losing more than 1/3, and player
B can force him to lose 1/3. Then -1/3 is the value of the game,
for which two intelligent opponents should be willing to settle.
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The techniques studied in Sections 5 and 6 of Chapter 5, can

be applied in computing the minimax strategies.
There is a striking similarity between the structure of the two-

person, zero-sum game and the statistical problem. In fact,
statistics is often referred to as a game against nature. However
there is a major difference, in that it seems unreasonable to regard
the unknown state of nature as the strategy selected by a malevo-
lent opponent. For this reason, the applicability of the minimax
criterion in the game problem does not necessarily imply that it is
the" correct" criterion for statistical problems.
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Outline of the Derivation of the
Utility Function

This appendix represents a bare and informal outline of the
main steps in a proof that the four assumptions of Section 2.1
of Chapter 4 imply the existence of a utility function with the
utility function properties 1 and 2. As previously indicated, a com-
plete and formal proof exists in Theory of Games and Economic
Behavior by Von Neumann and Morgenstern. Incidentally, a
slightly weaker version of our fourth assumption is used in that
presentation. The complete proof is quite long and formal and
requires some mathematical sophistication. This outline is pre-
sented merely as a handy reference for the use of readers with
considerably more background in mathematics than is expected
in the majority of the readers of this book.
In the trivial case where all prospects are liked equally well,

there is no problem and the utility function is constant. Here-
after, assume that there are at least two prospects Po and P, which
are not liked equally well. By assumption one, one of these is
preferred to the other. Let us assume that P, is preferred to Po'
In general let (P, Q; p, 1 - p) represent the mixed prospect of
facing P, with probability p and Q otherwise. Let p•.=
(PH Po; p, 1-p). Note that P, may be regarded as (PH P,; p, 1-p).
Using Assumption 4, we obtain:

LEMMA 1. P, is preferred to Pp which is preferred to Po for
O<p<1.
If 0 < q < p, Pq may be regarded as the mixture (Pp, Po; q/p,

1 - qjp). Using Assumption 4 again, we have:
LEMMA 2. Pp is preferred to Pq if 0 ~ q < p ~ 1.
Using Assumption 1, we derive a stronger form of Assumption 2:
LEMMA 3. If P is preferred to Q, and Q is regarded at least as

350
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well as R, then P is preferred to R. If P is regarded at least as ,
well as Q and Q is preferred to R. then P is preferred to R.

Now suppose that Pl is preferred to P which is preferred to Po,
Applying Lemmas 2 and 3, and Assumption 3, there is a number p
between 0 and 1 so that Pq is preferred to P for p < q < 1, and
P is preferred to Pq for 0 < q < p. Using Assumption 3 again,
it follows-that P and Pp are liked-equally well. We have

LEMMA 4. If Pl is regarded at least as well as P, and P is
regarded at least as well as Po, then there is a single number p
between 0 and 1 so that P and Ppare liked equally well.

In the case described in Lemma.4, define u(P) = p. If P is pre-
ferred to PH Lemma 4 tells us that there is a number a, 0 < a < 1,
so that Pl and (P, Po;a, 1 - a) are liked equally well. Then let
u(P) = l{a (which exceeds one). If Po is preferred to P then there
is a number b, 0 < b < 1, so that Poand (PHP; b, 1 - b) are liked
equally well. Then let u(P) = -b{(1 - b) (which is negative).

LEMMA 5. The function u satisfies the utility function proper-
ties if we consider only prospects for which 0 ~ u ~ 1.
Proof: Property 1 follows from Lemmas 2 and 4. Property 2

follows because (Pa, Po; p, 1 - p) is essentially the same as
Pap+O(l-P)'

THEOREM 1. The function u satisfies the utility function pro- -
perties. .
Proof: We wish to show that these properties apply to two

arbitrary prospects Q and R. Let P~ be the most preferred among
Pl, Q, and R, and let P: be the least preferred among Po, Q, and
R. Defineu*, as u was but based on Pi and P:. By Lemma 5,
u* satisfies the desired properties for Q and R and for all prospects
"between" P~ and P:. Hence it suffices to show that, for such
prospects, u and u* are linearly r'elated with positive slope.

If P is preferred to PH Pl is r~garded as well as (P, Po;u(P)-\
1 - U(P)-l). Applying Lemma 5" to u*, u*(Pl) = U(P)-l u*(P) +
[1 - U(p)-lJ u*(Po). Hence

u*(P) = u*(Po)+ [u;(Pl) - u*(Po)]u(P)
which is a linear relation with positive slope. The same relation
is obtained similarly in the cases where Po is preferred to P and
where P is "between" Pl and Po,
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In this book, we have been deliberately vague about the distinc-
tion between finite and countable additivity in expectation and
utility. In Theorem 1, we have established u(P, Q; P, 1 - p) =
pu(P) + (1 - p) u(Q). This does not imply that u(P) = E[u(P)] if
P is a mixed prospect which yields the random prospect P if there
are infinitely many possibilities for P. To obtain this stronger
result, Assumption 4 must be strengthened slightly. We shall
apply
ASSUMPTION 4a. If PI is regarded at least as well as QI for

i = 1, 2, •.• , any mixture of the PI is regarded at least as well
as the same mixture of the QI'
First we shall prove that utility is bounded. A new proof is

required because the one in Section 5, Chapter 4, used countable
additivity.
THEOREM 2. The utility function u is bounded.
Proof: Suppose that u is unbounded from above. Then there

are prospects PH P2, ••• , such that u(P,) ~ 21-'. The St. Petersburg
game gives P which may be regarded as a mixture of P" P2, ••• , P",
and a "remainder" R" which is itself a mixture of P"+H P"+2' •••.
Then

u(P). ~ (1/2)1 + (1/4)2 ••• + (1/2")2"-' + (1 - 1/2") u(R,,).

But Assumption 4a tells us that R" is regarded at least as well as
P, and hence u(R,,) ~ 1. Then u(P) = 00 which is impossible.
Hence u is bounded from above. Similarly, it can be shown that
u is bounded from below.
THEOREM 3. (Countable Additivity.) If P is a mixed prospect

which yields P = PI with probability PI, then

u(P) = L. PI u(PI) = E[u(P)].

Proof: As in the proof of Theorem 2

u(P) = i:. PI U(PI) + r" u(R,,)
1-'

where r" = 1 - i:. PI -. 0 and u(R,,) is bounded. Let n -. 00 and
1-'the theorem follows.
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Partial List of Answers to Exercises
CHAPTER 1

1. 1. (at, at, at, at)

1. 6. 81 82 83 84

81 3.2 6.4 4 3.2
82 4.6 3.4 2 5.4
83 1.0 0.8 1 2.1; 256 strategies

CHAPTER 2

2. 5. 350; 1434; 1784; 7000; 16
2.7. 3; 41; 218
2. 9. 11; -4; 7; 35; 24; 47; 405

for - 1 5: x 5: 1
"otherwise

for 'a 5: 1

fori - 1 5: a 5: 1

for 05:a5: 1
for a;2: 1
for a5: 0

7/10; 3/10
1/2
1/2; 1/3
0.5000; 0.3413; 0.8400; 1.000; A = 69; B = 64.065
0.0548
44.8; 50; 53.9
Straight lines, parabola; (a) overlaps (b) at one point and (c) at two
points; (b) and (c) are nonoverlapping.
(a) is a circle of radius 2 with center at origin, (b) is a disk of radius
2 and center at origin, (c) is a disk minus its boundary with radius.1
and center at (2,1); all three of these sets overlap.
1/2
9/47
4/47

F(a)=lCL
0.021
1/2
f(l) = 2/3, f(2) = 1/4, f(3) = 1/14, f(4) = 1/84

J 2 ;- for 05: Y 5: 1,
fey) = • y10

F(.)+:~'00-'(.)
{
(n,!'1 - X2)-1

f(x) = 0

3.28.

3.39.

3.34.
3.35.
3.37.

3.40.
3.43.
3.45.

3.49.

3.47.

CHAPTER 3

3.6.
3.10.
3.11.
3.21.
3.23.
3.24.
3.27.
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CHAPTER 4

4.1. 9;4;43
4. 5. Yes
4. 7. 0.30 approximately
4.8. 9.6
4.12. A, is a disk with radius 2 and center at origin. A. is a disk of radius
1 with center at (1.2); their union is the colIection of alI points in either or
both disks.

4.14. 60%
4.15. 80%; 20%
4.18. 7 cents
4.20. 0.59
4.22. Win 4000 with probability 1/2 or lose 4000 with probability 1/2; lose 500
with probability 15/16 or win 7500 with probability 1/16.

4.26. Select rifle with least variance.
4.29. 0.27; 0.33; 0.27
4.32. 4. 12.4. 3.52; 28.4. 899.44
4.36. P. p(l - p)
4.38. 1/2;./ 1/12
4.40. 17.5
4.43. 2; ./2

CHAPTER 5

8, 8. 83 8, 86 8. 87 88

z, a, a, a, a, a. a. a. a-
z. a, a, a- a- a, a, a- a.
Z3 a, a- a, a- a, a- a, a-

L(8,8)
8, 8. 83 8, 85 88 87 88

8, I 1 1.5 1.4 1.9 1.1 1.6 1.5 2

8" 4 3.2 1.6 0.8 3.2 2.4 0.8 0

8,.86.87.88. and mixtures of 8, and 85, of 86 and 87. and of 87 and 88.

(2/5;x + (3j5)y = 1; (2/7)x + (5/7)y = - 3/7; (3/2)x - (1/2)y = 1/25.21.
5.28. 88

5.32. Corresponding supporting line is (1 -w)L, +wL.=e. At point (Li'- Lt)

of intersection. we get L:' = e.

5. 1. a, a. a3 Expected Loss

8, I 0.4 0.6 0 8, I 0.6
8. 0.8 0.2 0 8. 4.6

5. 6. 3/8; 1/4; 3/8
5.10. (4.4, 2.4) = 0.4 (6,1) + 0.2 (2,2) + 0.4 (4.4)
5.11. Yes; no
5.13. 1; 2; 2; 3; 2; 2; 3
5.14. (e). (d)
5.18.

-- ._- - --~ ----.
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5.37. 81 with probability 3/4 and 86 with probability 1/4.
5.43. 81 with probability 0.77 and 8Bwith prohability 0.23 approximately.

CHAPTER 6

W3=0
W3 = 0
W3 = 2/5
W3 = 1

and
and
and
and

W2= 0,
wJ = 1/2,
W2 = 3/5,
w.= 0,

WI = I,
WI = 1/2,
WI=O,
WI =0,

a3; SP = 1
011; SP = 1/2
1
13/850
16 cents
45/1081
1/5; 1/5
2/5; 1/5
If ZI is observed,
If z. is observed,
If Z3 is observed,
If z, is observed,
1/9; 1/2; 2/9
41/126
7/41; 12/41; 22/41
1/32; 3/16
(alo 011, a3, a3)
0.0864
1/18
f(n) = (1/2)n, n = 1,2, 3, ...
E(N) = 2, O"N= 2 :r

!i
In general, E(N) = X-I and O"~ 'T= X-I + (1 - 2x)x-', where X = k2-(k-ll.

0.008; 0.64; (0.8)6; 1 - (0.8)6

( : )pr(l _ p)n-r6,42.

6,40.

6.25.
6.26.
6.27.
6.28.
6.29.
6.35.
6.36.
6.38.
6.39.

6. 1.
6. 5.
6. 7.
6.11.
6.13.
6.17.
6.18.
6.19.
6.20.

6,43.

6,48.

6.51.

e-AAr

r!
Normal with mean P-x + P-y and variance "'x + O"~

Normal with mean P-x - P-y and variance o"x + O"~

Normal with mean 2P-X - 3p-y ind variance 40"x + 90"~
(ai, 011, a3, a3); 6/10; ;

"al 011 a3

81 1/2 1/2

8. 0 1/2

83 0 0

o
1/2

1
ii

R(81,8) = 1/2, R(8., 8) = 1/2, If(83, 8) = 0

If
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CHAPTER 7

7. 1.

ELEMENTARY DECISION THEORY

8~ 8*
31.25

Regrets Action Probabilities Action Probabilities
e Risk Risk

r(e, al) r(e, U:l) P{X:2:31 Ie} p{x~lle} P{X:2:31.25Ie} P{X~31.25Ie}

28.0 40.00 0.00 0.000 1.000 0.000 0.000 1.000 0.000
28.5 27.50 0.00 0.000 1.000 0.000 0.000 1.000 0.000
29.0 19.40 0.00 0.000 1.000 0.001 0.000 1.000 0.000

29.5 13.15 0.00 0.001 0.999 0.018 0.000 1.000 0.003
30.0 8.00 0.00 0.023 0.977 0.184 0.006 0.994 0.048

30.5 3.55 0.00 0.159 0.841 0.564 0.067 0.933 0.238

31.0 0.00 0.00 0.500 0.500 0.000 0.308 0.692 0.000

31.5 0.00 2.20 0.841 0.159 0.350 0.692 0.308 0.678

32.0 0.00 3.55 0.977 0.023 0.082 0.933 0.067 0.238

32.5 0.00 4.40 0.999 0.001 0.006 0.994 0.006 0.026

33.0 0.00 5.00 1.000 0.000 0.000 1.000 0.000 0.001

33.5 0.00 5.35 1.000 0.000 0.000 1.000 0.000 0.000

34.0 0.00 5.50 1.000 0.000 0.000 1.000 0.000 0.000

7. 3. Accept; accept
7. 4. $(8~) =0.119; ~(8~.25) = 0.172; 1. 706 - 0.119 = 1.587
7.12. W/I00; Normal with mean e and standard deviation 10.
7.13. (a) 168/N; (c)N= 13
7.14. (X - 2.576, X + 2.576)

7.15. ex - 7.828,X + 7.828)
7.16. (0.291, 0.309); (0.390,0,410); (0,490, 0.510)

7.20. Reject if X ~ 30.355
7.22. Reject if I P - 0.21> 0.052

CHAPTER 8

8. 1. Yes; no
8. 2. Yes; yes
8. 4. (1) B = 0; (2) B = C = 0; (3) B = 0

CHAPTER 9

9. 3. 268
9. 7. 174
9. 9. Accept HI if I:(X, - 1-')' is large enough. (The action probabilities of a

test of this form can be obtained by reference to Table D, since I:(X,-I-')'/u'
is known to have the X'distribution with n degrees of freedom if XhX,,' .. ,X"
are independent and normally distributed with mean I-' and variance u'.)

9.12. n = 235; reject if It <0.526.
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9.18. Reject if IX - 500 I ::2:19.60
9.19. Reject H, if IX - PO I ::2:2.262sxVlO

CHAPTER 10
_ n __

10. 1. X + (3In) L: (Xl - X)2; 4X
1=1

10. 3. (p*)ml +m2(1 - p*)m2 +2m3,(m, + m2)/(m, + 2m. + 2m3)
10. 4. P. = 6.5
10.5. 1,-1
10. 6. I, 0
10.7. 0,0; 0,0; I, -1; 0,0; 1, -1
10.10. 25

np' _.-L
10.12. n _ 1 n - 1

10.14. 95% 98%

(a) (0.352, 0.448) (0.343, 0.457)
(b) (0.071, 0.129) (0.065, 0.135)
(c) (0.402, 0.598) (0.383, 0.617)

10.15. (19.18, 20.82); (19.59, 20.41); (19.73, 20.27)





Index

of risks, 154, 162,

Bayes, T., 136
Bayes action, 168
Bayes estimator, 281, 286, 288
Bayes risk, 168
Bayes strategy, 136, 143-145, 154, 160-

163, 179, 181, 198, 327, 332
Bayes theorem, 178
Bets, desirability of, 79, 87, 97, 101

case of insurance, 97, 103
case of many repetitions, 97, 110,

117
case of one trial only, 117

"fair," 97, ~101, 105
Bias, 289
Binomial distribution, 251

admissible tests for, 255
approximate normality of, 206
likelihood-ratio test for, 251-253, 335
maximum-likelihood estimate for, 279
sequential analysis for, 267-271

Binomial random variable, 188
Blackwell, David, 165, 274
Bross, 1. D. J., 16

Average, weighted,
163

loss table, 6, 11
Axes, 20, 155

Cdf, see Cumulative distribution func-
tion

Cell, see Interval
Central limit theorem, see Approximate

normality theorem
Chi square distribution, 356

table of, 308
Complement of a set, 90

359

A posteriori distribution, 280-282
A posteriori probability, 167, 170, 174-

178, 179, 180, 191, 224, 327, 329
A priori distribution, 280
A priori probability, 136, 145, 180, 193,

201
Abscissa, 20, 69
Absolute deviation, III
Absolute value, III
Action probabilities, 6, 11, 123, 202, 209,

225, 274
ideal, 123
of an estimator, 209

Additivity, countable, 352
finite, 352

Admissible part of boundary, 134, 159,
248 .

Admissible strategy, 8, 133, 134, 143,
145, 160, 193, 198, 206, 248, 256

absence of, 134
compromises concerning, 256

Admissible tests, 338
for certain composite hypotheses, 338
for the binomial distribution, 255
for the normal distribution, 255

Analogue method, 277-278, 288, 296
Approximate normality theorem, 187,

190, 199
see also Central limit theorem

Area, representing expectation, 318
representing probability, 57

Assumptions for existence of utility, 82,
350

Average, see Sample mean; Mean of
a sample

weighted, of expected losses, 153, 162
of points, 130, 131, 157
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Composite hypothesis, 245, 255, 256
Conditional distribution, 290, 291
Conditional probability, 170, 172, 183,

190
Confidence intervals, method of, 215,

221, 226, 275, 293, 297
Confidence level, 275
Consequence of action, see Loss table
Consequence of strategy, see Average

loss table; Expected loss
Consistent estimator, 285-287, 296
Continuous density, see Probability

density function
relation to cdf, 57

Continuous random variable, 46, 51, 56,
75,96

expectation of, 96
Contractor example, 3
Convex set, 101, 131, 133, 157, 160
boundary of, 135
generated by a given set, 101, 131,

133, 157, 321
of strategies, 126, 133, 135, 160

Coordinates, 20
Cord example, 195, 207
Cost of experimentation, model of, 235
Cramer, Harald, 78
Crossing bridges, 180, 191, 329
Cumulative distribution function, 47,

51,75
Cumulative frequencies, 24
Cumulative frequency graph, 26
Cumulative frequency polygon, 23, 40,

54

Data, grouped, 26
Davidson, D., 118
Decision making, under uncertainty, 2
rule for, see Strategy

Decision-making problems, essential
components, 10

Density, see Probability density func-
tion

discrete, 54, 75
Descriptive parameter, 117
Dice, 41
Digesting data, 167, 181, 191, 193
Dilemma, 260
Discrete density, 54, 75

Discrete probability density function,
54, 75

Discrete random variable, 46
as approximation to a continuous

random variable, 53
expectation of, 95
nature of cdf of, 51

Distribution, a posteriori, 280-292
a priori, 280
binomial, 251
Cauchy, 336
chi square, 356
table of, 308

exponential, 236
table of, 309

normal, 62, 76, 187
table of, 64, 307

probability, 46, 62, 73, 75, 89
rectangular, 279
Student's t, 264
table of, 310

symmetric, 237
unimodal, 238

Dominated strategy, 7, 124, 133, 160

Efficiency (asymptotic), 286, 296
Element of a set, 69
Error points, 246
Error probability, 202, 203, 225, 246
Errors of Type I and Type II, 246
Estimation, problem of, 109, 243, 275
Estimator, 209, 225, 276, 285
Expectation, 'see Population mean
of a continuous random variable, 96
of a discrete random variable, 95
properties of, 96, 315
represented by area, 318

Expected loss, points, 123, 124
weighted average of, 153, 162

Experiment, 10, 73
choice (design) of, 181, 264

Exponential distribution, 236
table of, 309

"Fair" game, see Bets, "fair"
Feller, William, 77
Frequency, 19, 23
relative, 19, 23
tabulation, 18
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Gamble, see Bets
Game theory, 16, 346, 349
Games, see Bets
Geometric progression, 56
Girshick, M. A., 165, 274
Grouped data, 26
computation of mean and standard

deviation, 38

Hedging, 164, 214, 242, 243, 292
Histogram, 20, 40, 58
History of an individual, 81
Hoel, P. G., 274
Hyperplane, 157
representation of, 157

Hypothesis, 202
alternative, 202
composite, 245, 255, 256
simple, 245, 250, 332
testing, 195, 202, 225, 242, 245

Ideal action probabilities, 123
Ignorance of the state of nature, 79,

119
Inadmissible strategy, 8, 123
"In control," 17
Independent, 190
events, see Independent sets
random variables, 186, 190
s~ts, 184, 190, 231

Indifference zone, 257, 273
Infinity, 104, 105
Insurance, 97, 103
Intervals, choice of, for tabulating data,

18,22
Invariance, 287-289, 296

Joint probability distribution, 186

Lev, Joseph, 40
Likelihood, 222, 278-280, 297
Likelihood ratio, 246, 254
generalized, 256, 273

Likelihood-ratio test, 248-254, 332, 335
for binomial distribution, 251-253,

255, 335
for Cauchy distribution, 336
for normal distribution, 253, 255, 335
generalized, 256, 273

Likelihood-ratio test, sequential, 267,
340

for binomial distribution, 267, 344
for normal distribution, 268, 344

Limit of a sequence, 284
lower, 284
upper, 284

Line, coefficients of, 138
in space, 156
representation of, 130, 137, 139, 156
segment, 130, 157
separating, 141, 143
slope, 139
supporting, 141

Logarithms, table of, 303, 304
Loss table, 10
Lower limit, 284
Luce, R. D., 118, 165

Marginal utility of money, 100
Maximum likelihood, 278-280, 286-288,

296
Mean of a distribution, 108, 114
see also Expectation; Population

mean
Mean of a sample, 29, 33, 38, 40, 312,

330
Measurement of temperatures, 85
Median, of a distribution, 111, 139
of a sample, 25

Minimax, average loss rule, 8
average regret principle, 12
expected loss strategy, 127, 148, 149,

161, 193, 347, 348
principle, 8, 12
risk strategy, 150, 162, 193

Mixed, see Randomized prospect; Ran-
domized strategy

Mode, of a distribution, 112, 238
Model, 228, 243
Moment, 277
of a population, 277
of a sample, 277

Moments, method of, 277, 278
Mood, A. M., 274
Morgenstern, Dskar, 118, 231
Mutually exclusive, see Nonoverlap-

ping sets
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No-data problems, 167, 179-181
Nonoverlapping sets, 69, 92
Nonparametric inference, 263
Nonrandomized, see Pure strategy
Nonzero sets, 92
Normal distribution, 62, 76, 187
admissible tests, 255
maximum-likelihood estimates for,

279
sequential analysis for, 268, 271
table of, 64, 307

Notation, diacritical marks, 298
exponential function, 76
Greek letters, 4
index of letters, 299
inequalities, 45
parameters, 298
random variable, 29, 298
subscripts, 29
summation, 29
various editorial symbols, 298

Null hypothesis, 217, 220
Null set, 90

Observations, cost of, 235
Operating characteristics, see Action

probability
Ordered observations, 25
Ordinate, 20, 69
Origin, 20, 155

p, 189, 190, 204, 206
Parallel lines, 138
Parallel planes, 157
Parameter, 107, 298
descriptive, 107, 117

Parzen, Emanuel, 78
Percentiles, 25
Plane, 69
representation of, 157
separating, 158
supporting, 158

Population (probability distribution),
60,62

infinitely large, 61, 62
mean, 108, 114, 330
median, 111, 319
moments of, 277
standard deviation, 114

Population (probability distribution),
variance, 108, 114

Precision of an instrument, 114
Probability, 41, 42, 52, 73
a posteriori, 167, 170, 174-180, 191,

224, 327, 329
a priori, 136, 145, 180, 193, 201
action, 6, 11, 123, 202) 209, 225, 274
axioms of, 313
conditional, 170, 172, 183, 190
density function, 56, 75
continuous case, .56, 75
discrete case, 54, 75
relation to cdf, 57

distribution, 46, 62, 73, 75, 89
joint, 186

error, 202, 203, 225, 246
of compound sets, 325
properties, 92, 230
zero, 52

Prospect, 81, 84, 98
randomized (mixed), 82, 98

Pure strategy, see Strategy, pure (un-
mixed or nonrandomized)

Raiffa, Howard, 118, 165
Rain example, 119
Random digits (numbers) 45, 305
table of, 305

Random normal deviates, 67
table of, 306

Random sample, 60
Random variable, 42, 74, 298
binomial, 188
continuous, 46, 51, 56, 75, 96
discrete, 46, 51, 53
independent, 186, 190
probability distribution of, 75
value of, 75

Randomized prospect, see Prospect,
randomized (mixed)

Randomized strategy, see Strategy
randomized (mixed)

Randomness, 1, 79
laws of, see State of nature

Range, 18
Rectangular density function, 75
maximum-likelihood estimate for, 279

Regression, 239
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Regret, 150, 203
expected, see Risk
function, 276
construction of, 211, 234
squared error, 211

Rejection region, 218
Responses, frequency of, 10
Risk, 150, 323
Bayes, 154, 168
function, 199
including cost of experimentation, 241
minimax, 150, 162, 193
with Bayes strategy, 154

Risk points, 154
set of, 246

Risks, weighted average of, 154, 162,
163

Roberts, H. V., 40
Rounding off, 19, 20

St. Petersburg Paradox, 104
Sample, 29
moment of, 277
random, 60

Sample mean, 29, 33, 38, 40
computation from grouped data, 39,

312
variance of, 187, 330

Sample standard deviation, '35, 37, 38,
40

computation from grouped data, 39,
312

dx,.35
8x,35

Sample variance
calculation equation, 35, 36, 311
computation from grouped data, 39,

312
dX2, 35
8X2, 35

Sampling, with replacement, 60-61
without replacement, 60-61

Savage, L. J., 165
Scientific method, 10
Scientific proof, 10
Separating line, 141, 143
Separating plane, 158
Sequential analysis, 266
binomial distribution, 267-271, 344

Sequential analysis, normal distribution,
268,271,272,344

Sequential experimentation, 182, 241
Sequential likelihood-ratio test, 267, 340
Bayes character of, 340
case of binomial distribution, 344
case of normal distribution, 344

Set, 69, 90
complement of, 90
element of, 69
null, 90

Sets, independence of, 184, 190, 231
stopping, 343
union of, 91

Siegel, Sidney, 118
Significance, practical, 220
statistical, 220
test of, 217, 242

Significance level, 218, 219, 273
choice of, 262

Simple hypothesis, 245, 250, 332
Slope of a line, 139
Space, three-dimensional, 155, 156
four-dimensional, 155
k-dimensional, 155

Squares and square roots, table of, 302
Standard deviation, of a sample mean,

187, 330
population, 114
sample, 35, 37, 38
computation from grouped data,
39,312

Standardizing, 115
State of nature, 1, 10, 79
Statistic, 298
Stopping sets, 343
Strategy, 5, 121, 197
admissible, 8, 133, 134, 143, 145, 160,

193, 198, 206, 248, 256
Bayes, 136, 143-145, 154, 160--163, 179,

181, 198, 327, 332
convex set of, 126, 133, 135, 160
dominated, 7, 124, 133, 160
equivalent, 160
inadmissible, 8, 123
minimax expected loss, 127, 148, 149,

161, 193, 347, 348
minimax risk, 150, 162, 193
pure (unmixed), 126, 127
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Strategy, randomized (mixed), 125, 126,
127, 145, 149, 193, 347

Student's t distribution, 264
table of, 310

Subsets, 73, 89
Sufficient statistic, 291, 296
Suppes, Patrick, 118
Supporting line, 141
Supporting plane, 158

t distribution, 264
table of, 310

Test of significance, 217, 242
Testing, hypothesis, 195, 202, 225, 242,

245
Tril~mma (three-action problem), 260
Two-action problem, see Testing, hypo-

thesis
Two-tailed tests, 259

Unbiased estimator, 288, 296
Uncertainty, 1, 79, 119
Uniform distribution, see Rectangular

density function
Unimodal, 238
Union of sets, 91
Unmixed, see Pure strategy
Upper limits, 284
Utility, 79, 80
application to fair bets of, 99

Utility function, 80, 83
construction, 113

Utility function, derivation, 350
properties, 81
first, 86
second,98
third, 106

Value, 80
of a game, 348

Variability, graphical representation, 34
see also Standard deviation; Variance

Variance, of a sample mean, 187, 330
population, 114
sample, 36, 37, 40
Clilculation equation, 35, 36, 311
computation from grouped data,
39, 312

see also Standard deviation
Venn diagram, 91
Von Neumann, John, 118, 231.

Wald, Abraham, 165
Walker, H. M., 40
Wallis, W. A., 40
Weighted average, 130, 131, 157
of expected losses, 153, 162
of risks, 154, 162, 163

Williams, J. D., 16

X, mean and vari.ance of, 187, 330

Zero probability, 52
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