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1 Mathematical Preliminaries
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Let us first consider the integral e 251 dx provided that o is a real
0
number. By setting ¢t = ax we find
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Recalling that the gamma function I'(s) is defined by
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we rewrite this integral as
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We can show that the equation (1) still holds even if « is some complex
number « = p + iq with p > 0. Namely,
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We multiply both sides of (2) by €%, and integrate over g from —oo to oo
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In other words,
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2 Chi-Square Distribution

The standard normal distribution is given by

flu) = ——e 2, (5)

We define x = u?, and wish to find the distribution Tj (z) of the random variable
.
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Using (5) we obtain
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T (z) = E(z*xmz*l/z (x> 0).

This probability density function is the so called chi-square (x?) distribution
with 1 degree of freedom.

Let x1, o, ---, z, are statistically independent random vaiables each of
which has the probability distribution T3 (x). Let

Yy=2T1+ T2+ + Tn.

The probability distribution T},(y) of y can then be written formally as
Ta(y) = / Sy —m — a2 — - —xn)Ti(21) T (22) - - - Ti (20) dydiy - - - divy.
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We use the integral representation of the Dirac d-function
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to carry out the integral.
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We find by using (2) that
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where we used the relation I'(1/2) = y/m. Then substituting this result to (6),
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To evaluate the integral we use (4), and finally find that
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This function is called the chi-square distribution with n degrees of freeedom.

3 Distribution of the Sample Variance

Let n quantities uy, usg, ---, u, are independent random variables selected from
the standard normal distribution N(0,1), and let
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is the sample mean of the n variables.
We then consider the distribution of a sum of sqaures defined by
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This distribution is written formally as
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As we introduce redundant variable @, it is necessary to insert delta function

n
0 (u - Z ul/n> in order to assure the constraint (7).
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Note that
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Furthermore, we use an integral representation of the § function
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to evaluate the integral (9). We also use the following relation to the other &

function,
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Substituting (10) and (11) into (9), we obtain
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The integral in the parentheses can be carried out in the following way:
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Substituting (13) into (12) gives
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The expression in the parentheses {---} in (14) can be written as
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The integral over @ then becomes
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Finally, applying (4) to (18), we obtain
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This is the probability density function for the x? distribution with
n — 1 degrees of freedom.



