The F-Distribution

Shoichi Midorikawa
Let x_{1} and x_{2} are independent variables obeying the χ^{2} distributions of the n_{1} and n_{2} degrees of freedom in each other. These distribution functions are given by

$$
\begin{equation*}
T_{n_{i}}\left(x_{i}\right)=\frac{1}{2^{n_{i} / 2} \Gamma\left(n_{i} / 2\right)} x_{i}^{n_{i} / 2-1} e^{-x_{i} / 2}, \tag{1}
\end{equation*}
$$

where $i=1$ and 2 . Now let's consider the distribution of the variable x which is the ratio x_{1} / n_{1} and x_{2} / n_{2},

$$
x=\frac{x_{1} / n_{1}}{x_{2} / n_{2}}
$$

We will write the distribution function of x as $f_{n_{1}, n_{2}}(x)$. Then it will be given by

$$
\begin{equation*}
f_{n_{1}, n_{2}}(x)=\int_{0}^{\infty} \delta\left(x-\frac{x_{1} / n_{1}}{x_{2} / n_{2}}\right) T_{n_{1}}\left(x_{1}\right) T_{n_{2}}\left(x_{2}\right) d x_{1} d x_{2} \tag{2}
\end{equation*}
$$

where $\delta\left(x-\frac{x_{1} / n_{1}}{x_{2} / n_{2}}\right)$ is a Dirac's delta function. Before integrate over x_{1}, we will introduce a variable $y=n_{2} x_{1} / n_{1} x_{2}$, and use this variable intead of x_{1}.

$$
f_{n_{1}, n_{2}}(x)=\int_{0}^{\infty} \frac{n_{1}}{n_{2}} x_{2} \delta(x-y) T_{n_{1}}\left(n_{1} x_{2} y / n_{2}\right) T_{n_{2}}\left(x_{2}\right) d y d x_{2}
$$

The integration over y is then simply to replace y by x.

$$
\begin{equation*}
f_{n_{1}, n_{2}}(x)=\int_{0}^{\infty} \frac{n_{1}}{n_{2}} x_{2} T_{n_{1}}\left(n_{1} x_{2} x / n_{2}\right) T_{n_{2}}\left(x_{2}\right) d x_{2} \tag{3}
\end{equation*}
$$

Using the explicit form of $T_{n_{1}}\left(n_{1} x_{2} x / n_{2}\right)$ and $T_{n_{2}}\left(x_{2}\right)$ given by eq.(1), we can rewrite eq.(3) as
$f_{n_{1}, n_{2}}(x)=\frac{x^{\left(n_{1}-2\right) / 2}}{2^{\left(n_{1}+n_{2}\right) / 2} \Gamma\left(n_{1} / 2\right) \Gamma\left(n_{2} / 2\right)}\left(\frac{n_{1}}{n_{2}}\right)^{n_{1} / 2} \int_{0}^{\infty} x_{2}^{\left(n_{1}+n_{2}\right) / 2-1} e^{-\left(1+n_{1} x / n_{2}\right) x_{2} / 2} d x_{2}$
Furthermore, we change the integration variable x_{2} for $t=\left(1+n_{1} x / n_{2}\right) x_{2} / 2$.
Then we find
$f_{n_{1}, n_{2}}(x)=\frac{x^{\left(n_{1}-2\right) / 2}}{\Gamma\left(n_{1} / 2\right) \Gamma\left(n_{2} / 2\right)\left(1+n_{1} x / n_{2}\right)^{\left(n_{1}+n_{2}\right) / 2}}\left(\frac{n_{1}}{n_{2}}\right)^{n_{1} / 2} \int_{0}^{\infty} t^{\left(n_{1}+n_{2}\right) / 2-1} e^{-t} d t$
The last integral is represented by the Gamma function,

$$
\Gamma\left(\left(n_{1}+n_{2}\right) / 2\right)=\int_{0}^{\infty} t^{\left(n_{1}+n_{2}\right) / 2-1} e^{-t} d t
$$

We then get

$$
\begin{equation*}
f_{n_{1}, n_{2}}(x)=\frac{\Gamma\left(\left(n_{1}+n_{2}\right) / 2\right) x^{\left(n_{1}-2\right) / 2}}{\Gamma\left(n_{1} / 2\right) \Gamma\left(n_{2} / 2\right)\left(1+n_{1} x / n_{2}\right)^{\left(n_{1}+n_{2}\right) / 2}}\left(\frac{n_{1}}{n_{2}}\right)^{n_{1} / 2} \tag{4}
\end{equation*}
$$

This equation called as Snedecor's F distribution or the Fisher-Snedecor distribution with (n_{1}, n_{2}) degrees of freedom. By using the Beta function which is defined by

$$
B(\alpha, \beta)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}
$$

we can rewrite the eq.(4) as

$$
f_{n_{1}, n_{2}}(x)=\frac{1}{B\left(n_{1} / 2, n_{2} / 2\right)}\left(\frac{n_{1}}{n_{2}}\right)^{n_{1} / 2} \frac{x^{\left(n_{1}-2\right) / 2}}{\left(1+n_{1} x / n_{2}\right)^{\left(n_{1}+n_{2}\right) / 2}} .
$$

We show in Fig.1, the F distributon functions with characteristic degrees of freedom.

Figure 1: F distributions with $\left(n_{1}, n_{2}\right)=(4,4),(4,20), \quad(20,4),(20,20)$ degrees of freedom.

Some Property of F distribution

What is the relation between the distribution of $x=\left(x_{1} / n_{1}\right) /\left(x_{2} / n_{2}\right)$ and that of $z=1 / x=\left(x_{2} / n_{2}\right) /\left(x_{1} / n_{1}\right)$? We want to change the variable x of $f_{n 1, n 2}(x)$ with z. We can realize this by the following integral.

$$
\begin{equation*}
f_{n_{2}, n_{1}}(z)=\int f_{n_{1}, n_{2}}(x) \delta\left(z-\frac{1}{x}\right) d x \tag{5}
\end{equation*}
$$

Let $a(x)=z-\frac{1}{x}$, and expand $a(x)$ around $x=\frac{1}{z}$,

$$
a(x)=z^{2}\left(x-\frac{1}{z}\right)+\cdots
$$

We then get

$$
\delta(a(x))=\delta\left(z^{2}\left(x-\frac{1}{z}\right)\right)=z^{-2} \delta\left(x-\frac{1}{z}\right)
$$

Substituting this int eq.(5) and integrating over x,

$$
\begin{aligned}
\int f_{n_{1}, n_{2}}(x) \delta\left(z-\frac{1}{x}\right) d x & =z^{-2} \int f_{n_{1}, n_{2}}(x) \delta\left(x-\frac{1}{z}\right) d x \\
& =z^{-2} f_{n_{1}, n_{2}}\left(\frac{1}{z}\right)
\end{aligned}
$$

we finally find the relation

$$
f_{n_{2}, n_{1}}(z)=z^{-2} f_{n_{1}, n_{2}}\left(\frac{1}{z}\right) .
$$

