gnuplot 入門

緑川章一

1 多項式

3次関数

関数 $y = x^3 + 3x^2$ を描いてみよう。

gnuplot を立ち上げて、以下のように入力 する。

gnuplot> set xrange[-3.2:1.3]
gnuplot> plot x**3+3*x**2

4次式

gnuplot> set xrange[-1.1:1.1]
gnuplot> plot x**4-x**2

三角関数 2

正弦関数

gnuolot> reset gnuplot> plot sin(x) 余弦関数

gnuplot> reset
gnuplot> plot cos(x)

注意 全ての設定をクリアするときは、 gnuplot> reset と打ち込む。

正接関数

サイン、コサインと来れば、次はタンジェントですね。 そこで、

gnuplot> plot tan(x)

と打ちます。すると、右の図が現れます。見慣れた図形 とは違いますね。これは、 $y = \tan(x)$ を描くときに、す べてのxについてyの値を求めていないからです。特に 指定しない場合には、標本点 (サンプル)の数を 100 に 設定し、それらの間を直線で結んでいます。複雑なグラ

設定し、それらの間を直線で結んでいます。複雑なグラフでは、標本点の数を多く取ると、より正確な図形が描けます。

今度は、標本点の数を700にして、次のように打ち込 みます。

gnuplot> set samples 700
gnuplot> plot tan(x)

きちんと表示されたでしょうか。もしも、今度は右の図 のようになってしまったとしたら、先ほどとは、*y*の値 の範囲が異なってしまったからです。

yの表示範囲を最初と同じにするためには、-30から 30にとることにしましょう。そのためには、

gnuplot> set yrange[-30:30]
gnuplot> plot tan(x)

と打ち込みます。どうですか? 期待した通りグラフが 描かれたでしょうか?

単位円 (a = 1) の場合

gnuplot> set size square

【注】この命令でグラフを正方形 (square) に表示します。 gnuplot> set parametric

dummy variable is t for curves, u/v for surfaces
gnuplot> plot cos(t), sin(t)

楕円

 $x = a \cos t, \qquad y = b \sin t$ とおくと、

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

a = 1, b = 0.5の場合

gnuplot> set size square gnuplot> set xrange[-1:1] gnuplot> set yrange[-1:1] gnuplot> set parametric

dummy variable is t for curves, u/v for surfaces
gnuplot> plot cos(t), 0.5*sin(t)

a = 1, b = 1 の場合

gnuplot> set size square gnuplot> set xrange[-5:5] gnuplot> set yrange[-5:5] gnuplot> set parametric

dummy variable is t for curves, u/v for surfaces gnuplot> plot $1/\cos(t)$, $\tan(t)$

リサージュ曲線 $x = \sin at$, $y = \sin bt$ a = 2, b = 3 の場合gnuplot> reset gnuplot> set size square

gnuplot> set parametric

dummy variable is t for curves, u/v for surfaces
gnuplot> plot sin(2*t), sin(3*t)

アルキメデスの渦巻線 r = at $(t \ge 0)$ a = 1 の場合 $x = t \cos t, \quad y = t \sin t$ gnuplot> reset gnuplot> set size square gnuplot> set xrange[-5*pi:5*pi] gnuplot> set yrange[-5*pi:5*pi]

dummy variable is t for curves, u/v for surfaces
gnuplot> plot [0: 5*pi] t*cos(t), t*sin(t)

4 グラフの保存

gnuplot> set parametric

ここでは、 $y = \sin x$ のグラフを例にとって PDF 形式での保存方法を説明します。

1. 表示されたグラフ上の Print plot ボタンを押します。

 プリンターの選択は Microsoft Print to PDF として、ファイルへの出力に ✓ を入れて印 刷ボタンを押します。適当なファイル名を付けましょう。分かりやすいように保存場所は デスクトップにします。

e5	
102	
ブリンターの選択	
음 Fax (국제icrosoft Print to PDF) (국제icrosoft XPS Document Writer (국) OneNote 16 に送る	□ 法習室B (窓側) ● 法習室B (廊下側)
状態: 準備完了 場所: コメント:	✓ ファイルへ出力(F) 詳細設定(R) プリンターの検索(D)
ページ範囲	
ぼくて(L)	部数(C): 1 🔹
○ 選択した部分(T) ○ 現在のページ(I)	U)
○ページ指定(G):	 部単位で印刷(O)
	11 22 33

課題

次の (1)~(7) の関数を 1 つ選びグラフを描け。作成したグラフをを pdf 形式で出力し、 (midori@aomori-u.ac.jp) まで提出せよ。

(1)	$y = \frac{1}{x^2 + 1}$	(30 点)	
(2)	$y = \frac{x}{x^2 + 1}$	(30 点)	
(3)	$y = x \sin x$	(40 点)	
(4)	$y = \frac{\sin x}{x}$	(40 点)	
(5)	$y = \sin\left(\frac{1}{x}\right)$	(45 点)	サンプル点 (samples) の数に注意しよう。
(6)	$y = \sin\left(x^2\right)$	(45 点)	サンプル点 (samples) の数に注意しよう。
(7)	$r = \sin(3\theta)$	(50点)	パラメトリック曲線である。グラフの縦横比に注意しよう。